

English	3 - 6
Art	7 - 8
Drama	9 - 11
Music	12 - 13
Geography	14 - 15
History	16 - 18
RE	19 - 21
Maths	22 - 26
Spanish	27 - 30
Science	31 - 36
Computer Science	37 - 40
Design Technology	41 - 44
Food Technology	45 - 48
Satchel:one Log In Guide	49 - 50

English Knowledge Organiser – Prejudice Scheme Y 9

Definition of Prejudice

Prejudice = a negative opinion that is

predetermined and is not based on reason or actual experience

Prejudices come from a variety of origins:

- Historical prejudice (slavery, wars, terrorism...)
- Roles in society (women = mothers/housekeepers, men = workers)
- Media depiction
- Family/peer opinions
- Laws and the government (gay and transgender rights)
- Scapegoating (Jews in Nazi Germany)
- Ignorance/lack of education -

Can you think of any more examples? Write them below:

Slang = informal language that is used in relaxed situations usually verbally.

Slang can often be part of a person's dialect and there is specific examples of slang from different places.

But there is also many common slang words that are used across the world by English speaking people, such as:

- Swear words
- Insults
- Idioms
- Colloquial words such as 'knackered', or 'gobsmacked'

UK DIALECTS

- o Scottish
- Geordie
- Scouse
- Yorkshire
- o Welsh
- o Brummie
- West Country
- R.P (Received Pronunciation)
- Essex
- Cockney

Can you think of any examples of 'slang'?

How has it entered our language?

	Slang I use	How i
		langu
1		•

English Knowledge Organiser Y9 Prejudice Spring 2

Women Rights' Timeline: Read the key events for the dates below, based on the progress of Women's Rights. Consider which event you think is most significant.

1660- Margaret Hughes becomes the first professional actress.

1866- A law forbids women to work more than 10 hours a day.

1869- John Stuart Mill publishes his book The Subjection of Women.

1885- Women first play tennis at Wimbledon

1886- Women are allowed to vote in county and borough elections.

1914-Britain gets its first policewomen.

1919- A new law opens certain professions to women.

1922-Ivy Williams is the first woman called to the bar of England and Wales.

Mayor in Britain (of Norwich).

the same as men.

Mayor of London.

1680 - 1834 Transatlantic slave trade

1686 - 1733 Nanny of the Maroons leads escaped Jamaican slaves

1841 - 1853 Solomon Northup kidnapped into slavery for 12

years 1854 - 1857 Mary Seacole

English Knowledge Organiser The Great Debate SUM1

Use of prompt	Use	Use of	Body language and	Variation of	Use of Standard En
cards	researched	persuasive	facial expression	tone in your	and complex vocab
	ideas.	language		voice.	
		techniques.			
Helps create eye	This will	This will	It will engage the	It can show	It shows you are we
contact with the	give you a	engage and	audience and give	emotion and	informed on the to
audience.	convincing	hook your	you greater	your passion.	and confident.
	argument.	audience.	presence.		

What words can you use to impress your audience? Here are a few to get you started...

Devastating	Severity	Stereotyped	Violence	Witness	Disturbingly
Controversial	Crisis	Prejudiced	Abusive	Perpetual	Atrocious
Alarmingly	Stigma	Discriminatory	Substantial	Nonsensical	Deliberate

Which vocabulary can you use to move your speech along?

chool Sal e High Sc chool Sal

At the beginning: Firstly, primarily, I'd like to begin with, to start with...

To build your argument: Furthermore, on top of this, in addition to, moreover...As a result...

To bring in a counter argument: It could be argued... although some may disagree... understandably, sometimes... outrageously, some say...

To finish: In conclusion... Finally...To sum up...In summary...

The 5 S's.

Stride: Walk to the platform with energy and purpose.

Stand: Don't distract your audience in the first instance by moving around- get them to focus on you.

Smile: It relaxes you and helps you engage with the audience.

Speak: Be ready to start speaking- you are in control

Stay: When you have finished, look around, nod or smile and take applause before leaving the stage.

Spelling Bee Words:

Reaction- A response to something. Controversial- Something easy to argue. Informative-Provides facts/statistics. Topical- Something of interest. Underestimate- Think less of something. Statistically- Based on a numerical fact. Nationally- Around the nation Political- relating to the government. Argumentative- Likes to disagree. Confrontation- A hostile or argumentative situation.

glish ulary.

ell pic

Persuasive techniques:

Tick these off as you use them.

- Direct address-using words like 'you' to the audience.
- Alliteration- repeating the same starting letters for effect.
- Rhetorical Question- a question that is not expected to be answered.
- Facts and statistics- e.g. 1 in 10 of us, 30 000 people...
- Anecdote- a personal story.
- Expert opinion- a quote from a doctor, professor etc.
- Figurative language- use metaphors, similes etc for effect.
- **Repetition** repeating a word or phrase for effect.
- **Rule of 3-** Using three words in a list for effect.
- Emotive language- Words that create an emotive response.

Successful ways to open a speech...

Quote

Opening with a relevant quote can help set the tone for the rest of your speech. E.g. "Yesterday is not ours to recover, but tomorrow is ours to win or lose."

"What If" Scenario

Immediately drawing your audience into your speech works wonders. Asking a "what if" question invites the audience to follow your thought process. E.g. What if you woke up every morning, cold, shivering on the street?

"Imagine" Scenario

A similar method, but more relevant for sensational examples. It puts your audience members directly into the presentation by allowing each member to visualize an extraordinary scenario. E.g. Imagine a world where everybody was treated equally... Question

Ask a rhetorical or literal question. How would you feel if you had to walk ten miles every morning...?

Statistic

Use a surprising, powerful, personalized statistic that will resonate with the audience to get your message across right away e.g. 1 in 2 people get cancer...

Powerful Statement/Phrase

A statement or phrase can catch the audience's attention by keeping them guessing as to what you're about to say next. E.g. half of the world's coral reef has been destroyed in the last 30 years.

How to structure the rest of your speech?

1)Begin by explaining the points you will make. E.g. Today, I will be sharing with you...

2)Begin your first argument, using a range of persuasive devices. Firstly, can you believe that...

3)Bring in a shocking fact for your audience to remember. E.g. Shockingly, a startling 60 %...

4)Introduce a counter argument. *E.g. while many may argue that...*

5)Bring in another argument. Furthermore...

6)Bring In one final argument. As a result...

7)Conclude by really emphasising your personal view. E.g. in conclusion, the main thing I want you to remember is...

Art Knowledge Organiser

<u>Key tips:</u>

- Start light and build up the dark colour.
- Allow each section to dry before adding more paint.
- If you overwork your paper it will bobble and rip.
- Watercolour painting is like Shrek- it has layers!

KEY WORDS – test yourself! (definitions on the next page) Shadow- Highlight- Tone- Cross hatching- Hatching- Mark Making- Layering-Shape- Form- Detail

Artist Research Year 9 Spring term

In the style of:

When creating a piece of art in the style of an artist it is very important you thoroughly understand their techniques in order to copy them effectively.

Besides using their techniques, you also need to take pride in your work and be as neat as possible. Here are some things to consider:

- Have you layered up mark making?
- Have you paid attention to detail?
- Have you shown highlights and shadows?
- Are the proportions correct?
- Have you used a combination of hatching and cross hatching?
- Is your work as neat as it can be?

KEY WORDS AND MEANINGS:							
Mark Making	The different lines, dots, marks, patterns, and textures we create in an artwork.						
Hatching	A shading technique which uses a series of thin, parallel lines that give the appearance of shadow in varying degrees.						
Cross hatching	The drawing of two layers of hatching at right-angles to create a mesh-like pattern.						
Stippling	The creation of a pattern simulating varying degrees of solidity or shading by using small dots.						
Scumbling	Scumbling is a shading technique achieved by overlapping lots of little circles.						
Tone	Tone in art simply refers to how light or dark a colour is. Each colour has an almost infinite number of tones.						
Layering	Simply placing one layer of colour/material/tone/technique over another.						
Form	Form refers to objects that are 3-Dimensional, or have length, width, and height.						
Highlight	The lightest part or one of the lightest parts of a painting, drawing, etc.						
Shadow	A dark area where light from a light source is blocked by an opaque object. Q						
Colour code: BLU	E= Tier 3 words ORANGE= Tier 2 words Look out for colour coding during lessons!						

Drama Knowledge Organiser

Year 9 Hamilton/Theatre Design Knowledge Organiser

Keywords:

Episodic Theatre – Scenes that stand alone and are constructed in small chunks, rather than creating a lengthy and slow build of tension

Ensemble – A group of actors who work together to create/perform a show

Evaluation - To evaluate something is to measure its worth. To evaluate drama and theatre you must be able to recognise what was and wasn't successful onstage and recognise all the elements that contribute to the impact of a production

Connotations - Refers to a meaning that is implied by a word apart from the thing which it describes explicitly

Musical Theatre - a form of theatrical performance that combines songs, spoken dialogue, acting and dance.

Previously learnt keywords and terminology

Synchronisation Monologue Soliloguy Thought tracking Multi-role Flashback Still image Narration Split focus Pitch Pace Pause Tone Volume Accent Gesture Posture Facial **Expressions Projection Diction**

Lighting

Spotlight Fresnel Birdie Strobe Gels Par can Flood Follow spot Gobo

Roles & responsibilities of the theatre

- * Set Designer
- * Costume Designer
- * Director
- * Lighting Designer
- * Sound Designer
- * Stage Manager
- * Understudy
- * Technician

Lin Manuel Miranda wrote and starred in Hamilton. Hamilton averages a whopping 144 words per minute with 20,520 total words!

- * Performer

Alexander Hamilton 1757 - 1804

Evaluation sentence starters

I thought it was effective... The piece was successful.... They achieved their objective... I was unsure about... I wasn't keen on... An area to develop is... A positive aspect was... A negative aspect was...

List the songs yo * Alexander Ham * 10 Duel Comm * You'll be back	ou have listened to nilton andments	from Hamilton	Stage Configurations	Proscenium Arch	The Schuvler Sisters
* Cohundar Ciotar	-		the pro-		he
* Schuyler Sister	5			Theatre in the Round	1. 18 11
* Guns and Snips	5				
* Helpless					Arron Burr
* A Winter's Ball				Thrust	
	Stage Positioning		and the second se		
Upstage	Upstage	Upstage	Constra Cartan 2 at 1]	George Washington
Right	Centre	Left		Traverse	George Washington
Centre	Centre	Centre			
Stage Right	Stage	Stage Left			
Downstage	Downstage	Downstage			
Right	Centre Audience	Left		Promenade	Thomas Jefferson & James Maddison

Drama Knowledge Organiser

ĨĨ

Script Writing and Devising

Music Knowledge Organiser

Minimalism

Background

- Emerged in America 1960's
- Famous composers include Steve Reich, Terry Riley and Philip Glass
- Was completely different in that it was experimental

 using unusual sounds and very limited musical material.

Transformation

Key Vocabulary

Steve Reich Terry Riley

Ostinati

Minimalist Music

Year 9: Term 2

Key principles of Minimalist Music:

- Based around a small idea –cell/ motif
- Constantly repeated elements Ostinati
- Slight changes over time to become more complex (changes in dynamics, rhythms, adding notes to a melody etc.
- Building layers of sounds to create a thicker texture
- Using multiple rhythms at the same time

Phasing Diatonic Synchronisation Looping Motif/cell Static Harmony Polyrhythms

> "The idea of minimalism is much larger than many people realize. It includes, by definition, any music that works with limited or minimal materials: pieces that use only a few notes, pieces that use only a few words of text, or pieces written for very limited instruments, such as antique cymbals, bicycle wheels, or whiskey glasses. It includes pieces that sustain one basic electronic rumble for a long time. It includes pieces made exclusively from recordings of rivers and streams. It includes pieces that move in endless circles. It includes pieces that set up an unmoving wall of saxophone sound. It includes pieces that take a very long time to move gradually from one kind of music to another kind. It includes pieces that permit all possible pitches, as long as they fall between C and D. It includes pieces that slow the tempo down to two or three notes per minute."

Tom Johnson – Minimalist Composer

Listening Examples Steve Reich 'Clapping Music' https://www.youtube.com/watch?v=QNZQzpWCTIA Philip Glass 'Music for 18 Musicians' https://www.youtube.com/watch?v=PMsYuFrKUQ8 Daniel Bernard

Roumain 'Metamorphosis' -

https://www.youtube.com/watch?v=m3KDUCfAeHE&list=PLpTG9WYI mrmVzxzJlkPUbQtPFyCfSOS9P Videos BBC 'Tones, Drongs and Arpeggios' An interview with Philip Glass https://www.bbc.co.uk/programmes/p05zf7xn

KEY WORDS AND MEANINGS (Tier 2 words in ORANGE, Tier 3 words in BLUE)

Ostinati	Musical repetition					
Counterpoint	Melodies that are against other melodies (played at the same time)					
Polyrhyhms	Many rhythms played at the same time					
Looping	When referring to old fashioned tape recorders – you literally loop a piece of tape so it repeats the music over and over					
Phasing	When two melodies or rhythms go out of synch and back in synch again					
Minimalism	A style in music that is repetitive, has gradual changes and is hypnotic					
Static Harmony	Groups of notes that do not change much					
Synchronisation	Bringing sounds together at the correct time					
Motif/cell	A short melody/musical idea					
Metric Displacement	Moving a melody to another art of the beat 13					

Geography Knowledge Organiser

Temperature (°F)

1.

Key concepts / words

Glacials – Colder periods of Earth's history with large ice sheets covering a large amount of the Earth.

Interglacials – Warmer periods of Earth's history without large ice sheets.

Solar radiation – The energy emitted by the Sun.

Deforestation – The cutting down of trees on a large scale.

Afforestation – the process of planting large numbers of trees on land which has few or no trees on it.

Atmosphere – a mixture of gases that surrounds the Earth. It helps make life possible by providing us with air to breathe, shielding us from harmful ultraviolet (UV) radiation coming from the Sun, trapping heat to warm the planet, and preventing extreme temperature differences between day and night.

Fossil fuels – A fossil fuel is a hydrocarbon-containing material such as coal, oil, and natural gas, formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel.

Throughout Earth's history, the climate has undergone natural cycles of climate change. The Earth would plunge into an "Ice Age" or "glacial" period, where massive sheets of ice covered much of the land. Eventually, the climate warmed, entering "interglacial" periods, allowing the ice to melt and plant and animal life to flourish. Over the past few hundred years, however, humans have significantly influenced the climate. The Industrial Revolution brought increased burning of fossil fuels, releasing heat-trapping gases and making the climate change faster than it naturally would.

Human causes of cli

Burning fossil fuels - The combustion of gas, releases large amounts of greenho dioxide, into the atmosphere. This enh more heat, leading to global warming activities, like manufacturing and trans to these emissions.

- 2. Deforestation involves the clearing of trees that absorb carbon dioxide. This carbon cycle, as fewer trees are availa released carbon, combined with the lo the greenhouse effect and accelerates
- 3. Livestock farming, particularly cattle, and through manure decomposition. that contributes to global warming.

Unit 3 - Climate

the Earth's surface by

like carbon dioxide and

and re-radiating heat.

Skill: analysing graphs – use TEA **Trend** – The overall shape/pattern of the graph. **Evidence** – Pick out specific data that fits into this pattern. Anomaly – Any unusual data which does not fit the pattern.

mate change	Physical causes of climate change
of fossil fuels, such as coal, oil, and ouse gases, particularly carbon hanced greenhouse effect traps and climate change. Human sportation, significantly contribute forests, reducing the number of contributes to an imbalance in the ble to convert CO2 into oxygen. The boss of a crucial carbon sink, amplifies climate change. produces methane during digestion Methane is a potent greenhouse gas	 Volcanic activity - volcanoes release large amounts of gases, including carbon dioxide and sulfur dioxide, into the atmosphere during eruptions. These emissions can temporarily influence climate by reflecting sunlight back into space and cooling the Earth. Variations in Earth's orbit - Earth's orbit changes over long periods, affecting its distance from the sun. These variations, known as Milankovitch cycles, can influence the Earth's climate by changing the amount and distribution of solar radiation, contributing to the onset of ice ages or interglacial periods. Sun spots - In a cycle lasting around 10 years, sunspots will appear of the surface of the sun. The more dark spots appear, the pare spar radiation is emitted, and therefore the earth receives more hear from the sun. This can cause a period of increased heating. If the sunspots are less numerous, the earth's climate may decrease.

Geography Knowledge Organiser

Unit 4 - Resources

Key concepts / words

Malnourishment - lack of proper nutrition, caused by not having enough to eat or not eating enough of the right things.

Poverty – lacking the financial resources and essentials for a minimum standard of living. Poverty-stricken people and families might go without proper housing, clean water, healthy food, and medical attention.

Fracking - drilling down underground and injecting a mixture of water, sand and chemicals into cracks in rock extremely high pressures. Th releases the gas, making it available for collection and use.

Shale gas - a form of natural gas (mostly methane), found underground in shale rock.

Food insecurity

A situation where someone cannot reliably get the food and/or nutritional requirements they need to survive and thrive. What causes food insecurity?:

- Desertification, the process by which fertile land becomes arid and infertile makes it almost impossible to grow crops, making it difficult for communities to sustain themselves.
- Millions live with hunger and malnourishment because they simply cannot afford to buy enough food, cannot afford nutritious foods or cannot afford the farming supplies they need to grow enough good food of their own. Hunger can be viewed as a dimension of extreme poverty.
- Wars and political instability disrupt food production, distribution, and access, often displacing communities and creating conditions where obtaining sufficient and reliable food becomes a significant challenge, leading to food insecurity.

RESTON NEW ROAD ACTION GROU

	The opportunities and	d challenges of fracking		What can be done to combat food insecurity?1. Reduce growth in demand for food and other		
	Opportunities	Challenges		agricultural products.2. Increase food production without expanding		
	 Shale gas is readily available in the UK Will act as a bridging fuel until alternative technologies are developed. 	 Contaminated water is pumped back into the ground and can affect water supplies. Fracking uses a lot of energy. 3% of the gas extracted is lost to 		 agricultural land. 3. Protect and restore natural ecosystems 4. Increase fish supply. 5. Reduce greenhouse gas emissions from agricultural production. 		
s at is	 The growth in the fracking industry can create more jobs. 	 the atmosphere – this is methane which is a greenhouse gas. Can cause small earth tremors. 	INTE O UNITARIA	Prilling Drilling Water and Chemicals		

Energy company Cuadrilla started fracking in Preston New Road after the government overturned the council's refusal of permission for hydraulic fracturing to be carried out on the site. This led to lengthy protests from environmental groups and local communities.

Fracking was banned at the site following concerning tremors in 2019. The government issued a Plug and Abandonment notice on the two Preston New Road wells operated by Cuadrilla on 9 August. The company now has until 30 December, 2024 to finish drilling.

History Knowledge Organiser:

Turning point of World War 2

In the USSR, after 4 months of very fierce fighting in the

Stalingrad - July 1942 – February 1943

Dunkirk - 26 May to 4 June 1940 The Battle of Dunkirk was fought around the French port of Dunkirk during the Second World War, between the Allies and Nazi Germany. As the Allies were losing the Battle of France on the Western Front, the Battle of Dunkirk was the defence and evacuation of British and other Allied forces to Britain. By saving the British expeditionary Force, the British government had kept its professional army alive. It would be able to fight in future battles and train new recruits.

Atomic Bomb - 6 August 1945

The USA dropped an **atomic bomb** on the Japanese city of Hiroshima. The blast devastated an area of five square miles, destroying more than 60 per cent of the city's buildings and killing around 140,000 people. Three days later the USA dropped a second atomic bomb on the Japanese city of Nagasaki, killing around 74,000 people. The official US justification for the dropping of the two atomic bombs was to force the Japanese government to surrender, which it did on 14 August 1945. Some historians have speculated mat the bombs might also have had another purpose - to send a warning othe Soviet Union about the strength of the American military

The attack on Pearl Harbour was a surprise military strike by the Imperial Japanese Navy Air Service upon the United States (a neutral country at the time) against the naval base at Pearl Harbour in Honolulu, Hawaii. Hundreds of Japanese fighter planes descended on the base, where they managed to destroy or damage nearly 20 American naval vessels, including eight

Pearl Harbour – 7th December 1941

battleships, and over 300 airplanes. More than 2,400 Americans died in the attack, including civilians, and another 1,000 people were wounded. The attack led to the United States' formal entry into World War II the next day.

city of Stalingrad, a large proportion of the German army surrendered. Gradually, Soviet forces (the USSR's forces) began to push the German army out of the USSR and back towards Germany. This was the first time the Germans had retreated in large numbers. At the same time, British and American bombers began air raids on Germany.

History Knowledge Organiser: Holocaust and Genocide

1933

•The SA organised a boycott of Jewish shops and businesses. •Books by Jewish authors were publicly burnt. •Jewish civil servants, lawyers and teachers were sacked, and Jewish

doctors and dentists could not treat Aryans.

•Science lessons about race were introduced which taught that Jews were subhuman.

1934

•Jewish shops were marked with a yellow star.

•Jews had to sit on separate seats on buses and trains. Many councils banned them from public spaces.

1935

•The Nuremberg Laws stripped Jews of German citizenship, outlawed marriage and sexual relations between Jews and Germans, and removed all the civil and political rights of the Jews. These laws were to be the foundation for much of the extreme persecution which took place later 1938

•Jews were ordered to register all wealth and property.

•Jews were forced to change their first names: males would be known as Israel, females as Sarah.

•Kristallnacht - 9 November (The Night of Broken Glass). The SS organised attacks on Jewish homes, businesses and synagogues in retaliation for the assassination of the German ambassador to France by a Jew. During Kristallnacht, 400 synagogues and 7,500 shops were destroyed. Jews were then made to clear up the destruction on their hands and knees and pay a fine of one billion marks to the government. The remaining Jewish property was then confiscated.

1939

•The Nazis, who had been encouraging Jews to emigrate from 1933 onwards, now started "forced" emigration.

Scan the OR code to watch a short clip on Jewish persecution

Adolf Hitler – leader of the Nazi Party. He was a great orator (public speaker) who hypnotised his audiences. In his writings and speeches talked of destroying the Jewish race and passed laws against Jewish people. His anti-Semitic beliefs and policies were implemented soon after the Nazis came to power. He believed the Aryan race to be superior,

Heinrich Himmler was the Head of the SS. He was in overall charge of the 'Final Solution' and believed that he was carrying out Hitler's instructions to exterminate the Jews. He made sure news about camps were secret; and had propaganda films made showing how well Jews were being treated.

German people of all jobs and backgrounds saw the Jews were being treated differently and did not protest. Many had even stopped buying goods at Jewish stores. Only a small number of German people stood up for the Jews.

Anne Frank was a German girl and Jewish victim of the Holocaust who is famous for keeping a diary of her experiences. Anne and her family went into h ding for two years to avoid Nazi persecution

Timeline: Persecution of the Jewish community

History Knowledge Organiser:

massaere

s auschwitz ĸ **Death camps**

Holocaust - the mass

regime during the

Jews, as well as members of other

period 1941–5. More

than 6 million European

persecuted groups such

as Romani, gay people,

and disabled people,

concentration camps

deliberate killing of a

large number of people from a particular nation

or ethnic group with the

aim of destroying that

were murdered at

such as Auschwitz.

Genocide – The

nation or group.

murder of Jewish people

under the German Nazi

Key words:

All over the world, Auschwitz has become a symbol of terror, genocide, and the Holocaust The Germans isolated all the camps and sub-camps from the outside world and surrounded them with barbed wire fencing. All contact with the outside world was forbidden.

Hitler's hate list •

- Jewish people
 - Gypsies (Sinti and Roma)
 - **Disabled** people
 - Homosexuals
 - The 'Rhineland Bastards' (African/German heritage)
 - Jehovah Witnesses
 - THE ASOCIALS: anti-Nazis, communists, trade unionists, the homeless, prostitutes, alcoholics

Hitler played on fears that one day Germans would be outnumbered by inferior peoples

During the Rwandan genocide of 1994, members of the Hutu ethnic majority in the east-central African nation of Rwanda murdered as many as 800,000 people, mostly of the Tutsi minority. Started by Hutu nationalists in the capital of Kigali, the genocide spread throughout the country with shocking speed and brutality, as ordinary citizens were encouraged to take up arms against their neighbours. By the time the Tutsi-led Rwandese Patriotic Front gained control of the country through a military offensive in early July, hundreds of thousands of Rwandans were dead and 2 million refugees fled Rwanda.

The Cambodian Genocide was the murder of millions of Cambodians by the Khmer Rouge. The Khmer Rouge were led by Pol Pot and held radical totalitarian beliefs. They wanted to create a classless, rural, agricultural society where personal property, currency, religion and individuality did not exist. People associated in any significant way with the previous government, religion, or education were targeted for persecution, imprisonment, torture and murder. Some Cambodians were also exploited as forced labourers by the regime and died as a result of over-work and malnutrition. Ineffective rulers and their economic mismanagement caused significant shortages of food and medicine. Hundreds of thousands of Cambodians began to die from hunger caused by the famine and treatable diseases such as malaria.

RE Knowledge Organiser.

Relationships

Families and gender roles

genders have the same rights

Responsibilities – Actions or duties you are expected to carry out.

Roles – The position of a person

Sacrament – an outward sign of an inward blessing / a ceremony blessed by God Families are important in Christianity and essential for society. Through the family, values are learnt and faith is developed. Children should respect their parents as the 10 commandments teach *'honour your mother and father'*.

Men and women should have equal roles as all God's creation and 'God made man in His image'.

<u>Adultery</u> - Having sexual relations with someone other than your marriage partner. Not allowed and a sin. Breaks the marriage vows and the 10 commandments teach 'do not commit adultery'. Adultery may harm the family unit. In Islam it goes against the unity and peace of the Ummah and Muslims believe you will be judged in the afterlife on your actions in this life.

Marriage is considered as God's intention – Adam and Eve were married.

Marriage is a **sacrament** and blessed by God.

Vows are taken to show commitment for example *'till death do us part'*. Marriage is the place to raise a family and have sex.

Divorce and remarriage

Catholics believe only death can end a marriage *'til death do us part'*. The sacrament with God is broken. The Bible teaches *'what God has joined together let no man separate'*.

Remarriage is seen as adultery and a sin 'do not commit adultery'.

Foe other Christians divorce maybe the 'lesser of two evils' for example if abuse or adultery has been committed – Jesus taught care and compassion 'Love your neighbour'. In Islam divorce is a last resort and a three month reconciliation period must happen – Iddah period. Qur'an teaches '*Of all lawful things, divorce is the most nated by Allah'*. A dowry provided at marriage in case of divorce and remarriage is allowed.

RE Knowledge Organiser.

Relationships

RE Knowledge Organiser.

Human Rights

Key concepts / words

Prejudice – Pre judging – judging people to be inferior or superior without a cause

Discrimination – Acts of treating groups of people, or individuals differently, based on prejudice

Censorship - The practice of suppressing and limiting access to materials considered offensive or a threat to security. People maybe restricted by censorship laws.

Personal Conviction -Something a person strongly feels of believes in

Relative poverty - A

standard of poverty measured in relation to the standards of society in which a person lives.

Religious expression -

Prejudice and discrimination are unacceptable in Christianity.
They go against religious teachings of equality. 'God made man in His image'.
Jesus didn't discrimination in the Parable of the Good Samaritan and taught 'Love your neighbour'. The Bible also teaches 'There is neither Greek or Jew, slave or free, male or female, all one in Jesus'. The Golden Rule states to treat others as you would want to be treated.
In Islam all people are equal as they are all Allah's creation. The teaching 'All equal as the teeth of a comb' promotes equality.

Personal Conviction is something a person strongly believes in and their actions may conflict with the law or authroity Martin Luther King had a personal conviction for racial equality. He led peaceful protests, used speeches, sit ins and non violence to fight against injustice. He believed all should be equal as we are all 'Made in God's image'. He also followed the example of Jesus 'Love your neighbour'.

Malala Yousafzai strongly believed girls in Pakistan deserved an education as this is her human right. She went against the authority if the Taliban in Pakistan who were not allowing girls an education. She was shot three times by the Taliban while on the school bus. Islam teaches 'All equal as the teeth of a comb' and we are all Allah's creation so should therefore be treated equally and are entitled to our human rights.

Wealth and Charity

Christians believe people should use their wealth to support others and they will be **rewarded in the afterlife**. The Bible teaches *'It is easier for a camel to pass through the eye of a needle than for a rich man to get into heaven.'*

Maths Knowledge Organiser **QUADRATIC GRAPHS** Line of symmetry **Examples Key Concepts** x = -1 $y = x^2 + 2x - 8$ A quadratic graph will always be in the shape of a parabola. A quadratic equation can be solved from $y = x^2$ $y = -x^2$ its graph. The roots of the graph tell us the possible solutions for the equation. -5 0 There can be 1 root, 2 roots or no roots for a quadratic equation. This is dependant on how many times the graph crosses the x axis. The roots of a quadratic graph are where -5 the graph crosses the x axis. The roots are Roots x = -4the solutions to the equation. x = 2y intercept = -8Turning point (-1,-9) **Key Words** Identify from the graph of $y = x^2 + 4x + 3$: Quadratic The line of symmetry 1) **Y9** Roots 2) The turning point Intercept 3) The *v* intercept **Turning point** 4) The two roots of the equation -5 Line of symmetry ANSWERS 1) x = -x bin f = -x (4 f = -x) (2 f = -x) (2 f = -3)

Maths Knowledge Organiser							
PERCENTAGE CHANGE AND REVERSE PERCENTAGL							
Key ConceptsCalculating percentages of an amount without a calculator:10% = divide the value by 10 1% = divide the value by 100Calculating percentages of an amount with a calculator:Amount × percentage as a decimalCalculating percentage as a decimalCalculating percentage as a decimalCalculating percentage as a decimal	Percentage change: A dress is reduced in £80. What is it's new $Value \times (1 - perce)$ $= 80 \times (1 - 0.35)$ = £52 A house price appred It originally costs £12 new value of the hou $Value \times (1 + perce)$ $= 120,000 \times (1 + 0)$ = £129,600	price by 35% from price ? entage as a decimal) ciates by 8% in a year. 20,000, what is the use? entage as a decimal) .08)	Reverse percentages: This is when we are trying to find out the original amount.A pair of trainers cost £35 in a sale. If there was 20% off, what was the original price of the trainers? $Value \div (1 - 0.20)$ $= 35 \div 0.8$ $= £43.75$ A vintage car has increased in value by 5%, it is now worth £55,000. What was it worth originally? $Value \div (1 + 0.05)$ $= 55,000 \div 1.05$ $= £52,380.95$				
Y9 F/H	Key Words Percent Increase/decrease Reverse Multiplier Inverse	 1a) Decrease £500 by (b) Increase 70 by 8.5 2) A camera costs £180 3) The cost of a holiday price? 	6% 5% 0 in a 10% sale . What was the pre-sale price y, including VAT at 20% is £540. What is the pre-VAT 24 05tT (5,007T (7, 56:57T (0,07t) (PT, Y, SNEMSNIP				

MFL Knowledge Organiser Yr 9 Spanish Spring 1 Diviértete

PRESENT	-ar ver	bs	-е	er verbs	-ir	verbs	enses
I	-0			-0		-0	
you	-as			-es		-es	
he/she/it	-a			-е		-е	
we	-amo	-amos		-emos	-i	mos	
you (pl)	-áis			-éis		-ís	
thev	-an			-en		-en	
FUTURE Sa	aying wh	at yo	ou a	re going	to do	2	
Voy					IN	FINITIVE	
vas						Ir	
vas						Tocar	
va						iugar	
vamos		d			nadar		
vais			· · · · · · · · · · · · · · · · · · ·		leer		
	Vai3		Ver				
van				Ver			
PAST preterit			AR		E	R/ IR	
l (yo)		é	é		í		
You (tú)		as	aste		iste		
He/she (él /ella)		Ó	Ó		ió		
We (nosotros	s)	amo		s imos		imos	
You (pl) voso	You (pl) vosotros ast		teis	s isteis		\$	
They (ellos/ellas)		arc	aron		ieron		

<mark>pinions & P</mark>	ronouns	Adjectives emocionantes	exciting
o que más me gusta Creo que/pienso qu	es =the thing I most like is e= I think that	aburridas	boring
Me chifla	MeMe pone de los	divertidas	fun
Me hace feliz	nervios	infantiles	childish
(it makes me happ y) Me alegra	Me saca de quicio	interesantes	interesting
Me diverte	Me aburre	estúpidas	stupid
Conne	ectives	Graciosas	funny
SEQUENCING En primero	firstly	Intensas	intense
En Segundo secondly		Tristes	sad
Luego	then	Deprimentes	depressing
Despues Más tarde	later	De miedo	scary
De repente	suddenly	Atemorizantes	terrifying
Com	plexity	Espantosas	frightening
quiero+ infinitive= IQuise+ inf= I	want to		
Tengo que + Infinitive <u>Tuv</u> e que + inf =	= I have got to	Las comedias <u>son ma</u> películas de acción =	ás graciosas que las are more funny than
Puedo + inf = to be al <u>Pude</u> + inf = I could	ole to	Demasiado= <i>too</i> realmente= <i>really</i> Tan= so (es tan bard	to =it is so cheap)

KO. Yr9 Diviértete **TOPIC VOCABULARY TRANS**

UNA CITA - a date

DONDE

al club de jóvenes a la pista de hielo al cine al parque de atracciones a la bolera En la plaza En tu casa En la estación

to the youth club to the ice rink to the cinema to the amusement park to the bowling-alley In the square At your house At the station

¿Cuándo? esta mañana esta tarde esta noche mañana por la mañana mañana por la tarde

When? this morning this afternoon this evening tomorrow morning tomorrow evening/pm

Las películas ...

films.

románticas cómicas de ciencia-ficción de acción de terror de dibujos animados Del oeste

romantic comedy (comedies) sci-fi action horror animated (cartoons)... western

Los verbos

Llamar por teléfono - to call

Quedar - to meet

Encontrar - to meet

Pasarlo bien* - to have a good time

Viajar - to travel

Llegar - to arrive

Empezar - to startr

Tirar (tomates) - to throw (tomatoes)

the news

soaps

cartoons

sports programmes

music programmes

reality TV programmes

Hacer sol / calor / frío

Llover - to rain

Preferir - to prefer

Ver - to watch

Salir - to go out

Querer - to want

Los programas

Las noticias Los concursos Los documentales Las series cómicas Las series policiacas Las telenovelas Los dibujos animados Los programas de deporte Los programas musicales Los programas de tele realidad

¿De dónde? - From where?

¿Cuál? - Which one?

MFL Knowledge OrganiserSpring 2 la tecnología y la música

	Irregular preterites	Ver Vi Viste		Hacer		Tenses Ir/ser		
	I.			Hice Hiciste		Fui Fuiste		
	you							
	he/she/it		Vio	Hizo		Fue		
	we	V	/imos	Hicimos	S	Fuimos		
	you (pl)	V	/isteis Hicisteis		S	Fuiseis		
	they	vieron		Hicieron		fueron		
	circy	v	leion	пісіегої	1	Tueron		
	PAST preter	'it	A			ER/ IR		
1 (PAST preter	'it	é	R	Í	ER/ IR		
I (Y	PAST preter (yo) ou (tú)	'it	é aste		í	ER/ IR		
I (Ү Н	PAST preter (yo) ou (tú) e/she (él /ella)	it	é aste ó		í is ió	ER/ IR		
I (Y H	PAST preter (yo) ou (tú) e/she (él /ella) /e (nosotros)	it	é aste ó amos		í is ió	te nos		
	PAST preter (yo) ou (tú) e/she (él /ella) /e (nosotros) ou (pl) vosotros	it	é aste ó amos asteis		í is ió in	ER/ IR te nos teis		

Opinions <u>& Prono</u>uns

Me hizo feliz

(it makes me happy) Me divertió

Me alegró

Connectives/frequencies

Me enfadó (angered)

Me puso de los

Me sacó de quicio

nervios

Me aburrió

Ayer - yesterday El mes pasado – last month La semana pasada – last week Anteayer – day before yesterday El año pasado – last year Hace dos días – 2 days ago Have tres semanas – 3 weeks ago

Complexity

quiero + infinitive = I want to .. <u>Quise</u> + inf = I wanted to

Tengo que + Infinitive = I have got to <u>Tuv</u>e que + inf = I HAD to

Puedo + inf = to be able to <u>Pud</u>e + inf = I could

Adjectives

Útil Fácil Rápido Práctico Peligroso Lento Gratis Caro Barato Gracioso Inútil useful easy fast practical dangerous slow Free (of charge) expensive cheap funny useless

La red es <u>más útil qu</u>e un libro = the interior is more useful than a book El ordenador es <u>menos práctico</u> que mí móvil = the computer is less practical than my phone

Lo bueno/mejor es jugar juegos en linea = the good/best thing is playing games on line. Lo malo/peor es hacer las comparas – the bad/worst thing is doing shopping

KO. Yr9 la tecnología y la música

TOPIC VOCABULARY TRANS

usar la tecnología					
usar/ utilizar	To use				
uso/ utilizo	l use				
chatear con amigos	chat with friends				
hacer los deberes	to do homework				
investigar	to do research				
navegar por internet	to surf the internet				
comprar en línea	to shop online				
enviar mensajes de texto	to send texts				
enviar correos electrónicos	to send emails				
leer los periódicos	to read newspapers				
leer libros	to read books				
expresar una opinión	to express an opinion				
sacar fotos	to take photos				
compartir fotos	to share photos				
ver una película	to watch a film				
descargar música	to download music				
jugar juegos	To play games				
puedes comunicarte con todos tus contactos	you can communicate with all your contacts				
es gratis si tienes conexión a internet	It's free if you have an internet connection				

Vocabulario importante					
ser adicto/a	to be addicted				
el hecho	fact				
el acoso	bullying				
el correo basura	spam / junk mail				
los usuarios	users				
a conexión inalámbrica	wireless connection				
la pantalla	screen				
el buscador	search engine				
la contraseña	password				

Los aparatos					
el ordenador	a computer				
el portátil	a laptop				
el móvil	a mobile phone				
la tableta	a tablet				
lector de libros electrónicos	an eBook reader				
los medios sociales	social media				
las redes sociales	social media				
los mensajes de texto	text messages				
las aplicaciones	apps				
el iPad/ iPod	iPad / iPod				
la revista (digital)	(digital) magazine				
el correo	E-mail				

La música

La músic La músic La músic La músic El pop El rock El jazz El rap	a clásica a Latina a electrónica a de los años sesenta	classical music latine music electro music music from the sixtie pop music rock jazz rap music				
	Los v	erbos				
	encender	to switch on				
	apagar	to switch off				
	hablar	to speak				
ik.	chatear	to chat				
	comunicarse	to communicate				
	descargar	to download				
	borrar	to delete				
r	crear	to create to send				
	enviar					
	mandar	to send				
	guardar	to save				
	quitar/eliminar	to remove				
	comprar	to Dy				
e	vender	towell				
	compartir	to share				

Science Knowledge Organiser

Physics GCSE	Transition		and so it tends to rise and create lower air			materials or other magnets	Direct proportion
1. Differences			air above the land is at				
Potential differences Temperature differences	Causes currents to flow in circuits Causes energy to be transferred between		flows out over the sea; the breeze blows from land to sea			The arrows show the direction a north pole would move	-
Why a cold drink taken from the fridge will warm up	objects by heating The air in the room is warmer than the drink, so energy is transferred from the air to the drink until both are at the	2. Fields Force field	The volume around something where a non-contact force can affect things	Ca grupo en	llculating avitational otential nergy	Gravitational potential energy (in J) = mass (in kg) × height (in m) × gravitational field strength (in N/kg)	Inverse proportion
Latent heat	same temperature The energy needed to break the bonds between particles in melting or evaporating, or the energy released	Electric field	The space around an object with a charge of static electricity where it can affect other objects	3. Co	Cause And orrelation	Understand Stress Stres	Distance-time
Specific heat capacity	when these bonds form in condensing or freezing The energy needed to raise the temperature		The arrows show the direction a positive charge would move	4.	Links Betw	variables changing with time in a similar way	graph Speed-time graph
Convection current	of 1 kg of a substance by 1 °C A flow of liquid or gas caused by part of it being heated or cooled	Gravitational field	The space around any object with mass where its gravity attracts other masses	Eq str	luation for a raight line	y = mx + c y is the dependent variable, m is the gradient, x is the independent variable, c	5. Models
How a land breezes occur	more than the rest At night the land cools down faster than the sea because it has a lower specific heat capacity, so the air		The direction of a gravitational field is always towards the mass	Lir re	near lationship	is the point where the line crosses the vertical axis A relationship between variables that produces a straight line	can be used for Abstract model
	above the land is cooler than the air above the sea; the air above the sea is less dense than the air above the land,	Magnetic field	The space around a magnet where it can affect magnetic	/		The line does not have to go through the (0,0) point	Physical model

A relationship between two variables where one variable <u>doubles</u> when the other doubles

The graph is a straight line through (0,0)

A relationship between two variables where one variable <u>doubles</u> when the other halves

Example: If the crosssectional area of a wire is doubled, its resistance halves

The gradient of the line tells you the speed The gradient of the line tells you the acceleration and the area under the graph tells you the distance the object has moved

To help us understand how things work; to test new technology A model that only exists in your thoughts or as a computer program, formula or diagram A model that you can touch or a model that you could build e.g., wind tunnel

31

B1: Biology key concepts

Lesson sequence

- 1. Microscopes
- 2. Plant and animal cells
- 3. Measuring cells
- 4. Core practical: using microscopes
- 5. Specialised cells
- 6. Bacterial cells
- 7. Digestive enzymes
- 8. How enzymes work
- 9. Factors affecting enzymes
- 10. Core practical: enzymes and pH
- 11. Cell transport
- 12. Core practical: osmosis in potatoes

1. Microscopes					
*Magnification	The number of times bigger				
	something appears under a				
	microscope.				
*Eyepiece lens	The lens on a microscope that				
	you look through.				
*Objective	The lens at the bottom of a				
lens	microscope. There are normally				
	three you can choose from.				
*Total	Eyepiece lens x objective lens.				
magnification					
**Resolution	The smallest distance between				
	two points so that they can still				
	be seen as two separate points.				
**Stains	Dyes added to microscope slides				
	to show the details more				
	clearly.				
**Milli	Thousandth, 1x10 ⁻³ (a millimetre				
	is a thousandth of a metre).				
**Micro	Millionth, 1x10 ⁻⁶ (a micrometre				
	is a millionth of a metre).				
**Nano	Billionth, 1x10 ⁻⁹ (a nanometre is				
	a billionth of a metre).				
**Pico	Trillionth, 1x10 ⁻¹² (a picometre is				
	a trillionth of a metre).				

Diana alida ladiwataha anawa faawa watilaha						
Place slide adjust the coarse focus until the	adjust the coarse focus until the					
in lens is just touching the slide.						
microscope						
*CP1 – Looking through the eyepiece,						
Rough slowly adjust the coarse focus unt	slowly adjust the coarse focus until					
focus you see a rough image.						
*CP1 – Fine Looking through the eyepiece,						
focus slowly adjust the fine focus until	slowly adjust the fine focus until					
you see a sharply focussed image.						
*CP1 – Draw what you see, label any cell						
Record the parts you can recognise and repea	ıt					
image with different objective lenses.						
*CP1 - As you increase the magnification	of					
Results the objective lens, the cells appea	r					
larger and more detailed.						
E Specialized calls						
5. Specialised cells						
interting produced during digestion	reduced during digestion					
soll Adaptations: Tipy folds called	dantations: Tipy folds called					
microvilli that increase their surface	nicrovilli that increase their surface					
	-					
**Snerm Inh: Fertilise an egg and deliver ma	Iob: Fertilise an egg and deliver male					
cell DNA	ie					
Adaptations: A tail to swim	Adaptations: A tail to swim,					
mitochondria to give energy for						
swimming, an acrosome to break						
through the egg's jelly coat, haploid						
nucleus with only half the total DNA	ucleus with only half the total DNA.					
**Egg cell Job: To be fertilised by a sperm and						
then develop into an embryo.						
Adaptations: Jelly coat to protect th	ne					
cell, many mitochondria and						
nutrients to provide energy for						
growth, haploid nucleus with only						
half the total DNA.						
**Ciliated Job: To clear mucus out of your lun	gs					
epithelial (and other internal surfaces).						
cell Adaptations: Small hairs on the						
surface – called cilia – which wave t	0					
sweep mucus along.						

6. Bacterial cells					
*Parts of a All bacteria: Cell membrane.					
bacterial cell	cell wall, cytoplasm.				
	ribosomes, chromosomal DNA,				
	plasmid DNA				
	Some bacteria: flagellum.				
**Chromosoma	Large piece of DNA containing				
DNA	most genes.				
**Plasmid DNA	Small loops of DNA containing				
	a few genes				
**Flagellum	A tail used for movement				
**Fukarvotic	Cells with a nucleus				
colls	cells with a nucleus.				
**Drokarvotic	Cells without a nucleus				
	cens without a nucleus.				
***Standard	A way of writing numbers in				
form	terms of nowers of ten E g				
	terms of powers of tem. L.g.				
	$0.015 - 1.5 \times 10^{-2}$				
	$0.015 = 1.5 \times 10^{-1}$				
	4				
	The index of ten (the 'minus'				
	number) tell you which				
	decimal point to start on				
۲					
lasm	• • <u></u>				
۵.					
mal	Ce series				
Chro	Flage				
7.	Digestive enzymes				
*Digestion Bre	aking large food molecules				
dov	vn into ones small enough to				
abs	orbed by the small intestine				
*Catalyst A su	ibstance that speeds up a				
che che	chemical reaction without being				
	used up				
*Enzyme An	rotein that works as a catalyst				
	need up the reactions in our				
*Digosting	s.				
Digestive Enz	ymes mat break large rood				
enzymes mo	lecules down into smaller ones.				

**Amylase	Where found: saliva, small						
	intestine						
	What it does: breaks down starch						
	into simple sugars such as maltose						
**Lipase	Where found: small intestine						
	What it does: breaks down fats						
	into fatty acids and glycerol						
**Protease	Where found: stomach (pepsin),						
	small intestine (trypsin)						
	What it does: breaks down						
	proteins into amino acids						
	8. How enzymes work						
*Substrate	The chemical(s) that an enzyme						
	works on.						
*Active site	An area of an enzyme with the						
	same shape as the substrate.						
**Lock and	The substrate moves into the						
kev	active site and reacts to form the						
mechanism	products. The products leave the						
	active site so another substrate						
	can then enter and so on.						
**Specificity	icity Each enzyme can only work on one						
substrate because the shape of the							
	active site has to match.						
*Denature	When the shape of the active site						
	changes shape so the enzyme						
	stops working.						
Substrate	site						
Enzyme	Enzyme-substrate complex Enzyme						
9.	Factor affecting enzymes						
*Optimum	The temperature when an						
temperature	e enzyme works fastest (about 37 ^o						
	for human enzymes).						
**Changing	Increasing to optimum: rate						
the	increases because particles move						
temperature	faster						
	Increasing past optimum: rate						
	decreases as enzyme denatures						

*Optimum	The pH when enzymes work	*Diffusion	Lungs: oxygen into blood,		
рН	fastest (around pH 6-8 for most	examples	carbon dioxide out of blood		
	human enzymes)		Leaf: carbon dioxide into leaf,		
**Changing	Rate decreases as you move		oxygen out of leaf.		
рН	away from the optimum because	**Partially	A membrane that allows some		
-	the enzyme denatures.	permeable	molecules but not others to		
**Increasing	At first the rate increases, but	membrane	pass through it (like a cell		
substrate	then it levels out as the enzyme		membrane).		
concentration	is working as fast as possible.	**Osmosis	The movement of water		
10. Core pr	actical – enzymes and nH (CP2)		across a partially permeable		
*CP2 - key	How does the rate that amylase		membrane from high		
question	works change as you change the		water/low solute conc to low		
question	nH?	***	water/high solute conc.		
*CP2 -	Place starch solution amylase	**Osmosis	Water into plant roots, water		
Prepare your	solution and pH 7 buffer into	examples	in/out of any cells.		
reactants	separate test tubes and warm	*Active	Using energy to move		
reactants	them in a water bath at 40°C	transport	substances from low to high		
*CP2 -	Place a few drops of jodine		concentration (up a		
Prepare your	solution into each well of a		concentration gradient).		
dropping tile	spotting tile	*Active	Minerals being absorbed into		
*CP2 - Start	Mix reactants together start the	transport	plant roots.		
the reaction	stop watch and keep the mixture	examples			
	warm in the water bath.	12. Core pra	ctical – osmosis in potatoes (CP3)		
*CP2 – Test	Remove a small amount of	*CP3 -	Cut six similar pieces of potato.		
for starch	mixture and place in a well on	Prepare	blot them dry and weigh them.		
	the spotting tile.	potatoes			
*CP2 -	Repeat the test until the mixture	*CP3 – Run	Place each potato piece in a test		
Record vour	does not go black (no starch).	the	tube with sucrose (sugar)		
results	Record the time.	experiment	solutions with concentrations		
*CP2 – Varv	Repeat with different pH buffers		from 0% to 50%		
the pH	from pH 3 to pH 10	*CP3 –	Blot each potato piece dry and		
*CP2 -	The amylase works fastest	Record	re-weigh it.		
Results	around pH 7 and more slowly at	results			
	pH high or lower than this.	*CP3 –	% change = (final value – starting		
		Calculate	value) / starting value x 100		
	11. Cell transport	percentage			
*Concentratio	n The number of particles in a	mass change			
	given volume (the strength of	*CP3 –	Potato in weaker sucrose		
	a solution).	Results	solutions gain mass because		
**Concentrati	on The difference in		water enters potatoes by		
gradient	concentration between two		osmosis, those in stronger		
	neighbouring areas.		solutions lose mass as water		
*Diffusion	The movement of particles		leaves by osmosis.		
	from high to low	L			
	concentration (down a		\mathbf{a}		
	concentration gradient).		して		

B2: Cells and control		*Percentile	A measure of the growth of a	*Stem cells	lt is h	oped they can be used to	**Synapse		Small gap between two	
			child that compares them to	in medicine	repla	ce damaged cells in diseases			neurons where the axon	
L	esson sequence		other children of the same age.		like ty	pe 1 diabetes or leukaemia,			terminals of one meet the	
1. Mitosis		*90 th	A child is taller than 90% of		or to	grow new organs for			dendrites of another.	
2 Anima	lgrowth	percentile	children of the same age.		trans	plant.	**		Chemicals released by axon	
2. Diant a	rowth	*50 th	Average for height/mass for the	**Problems	They	may potentially cause	Neurotrans	nitter	terminals that diffuse across	
3. Plant g	nowin	percentile	age.	with stem	cance	er, stem cells can only be			the synapse to trigger a new	
4. Stem c	cells	*Percentile	Graphs showing how	cells	used	in the person they have			impulse the dendrite of	
5. Nervou	us system	graphs	height/mass change with age		come	from.			another neuron.	
6. Neurot	transmission		with different lines for each		5 N	ervous system	**Sensory n	euron	Nerve cell that carries	
7. Contro	olling movement		percentile.	*Nervous	All the	e nerves in your body			impulses from sense organs	
71 00110		*Cell	When a cell divides by mitosis to	system	worki	ng together to gather			to the CNS. Has a long	
	1. Mitosis	differentiation	n produce two different types of	system	inform	nation make decisions and	de de -		dendron and a long axon.	
*Cell cycle	The life of a cell comprising		cell (not two identical ones).		contr	ol responses	**Relay neu	ron	Nerve cell in the CNS that	
	interphase and mitosis.	*Specialised	A cell special features designed	*Central	The h	rain and spinal cord – makes			makes decisions. Dendrites	
*Interphase	Preparation for mitosis in which	cell	for a specific job.	nervous	decisi	ons (aka CNS)			join onto cell body, short	
	extra cell parts are made and	**Importance	To produce all the different	system	accisi		de de a cara c		axon.	
	DNA chromosomes are replicated	of	types of cell the body needs	**Periphera	I All vo	ur other nerves – gathers	**Motor ne	uron	Nerve cell that carries	
	(copied).	differentiation	such as red blood cells, fat cells,	nervous	inforr	nation from your sense and			impulses from the CNS to	
*Mitosis	When one cell divides into two	in animals	nerve cells and muscle cells.	system	carrie	s messages from the CNS to			muscles. Dendrites join onto	
	genetically identical daughter		3 Plant growth	system	vouru	nuscles			cell body, long axon.	
	cells.	*Plant growth	Cell division creates more cells	*Neurone	A ner	ve cell		7. Contr	olling movement	
*(I)PMATC	The stages of mitosis: interphase	i lant growth	elongation makes these cells get	*Impulse	Flectr	ical message carried by a	*Stimulus	A piec	e of information detected by	
	(not mitosis), prophase,		higger	impulse	neuro	in.	••••••••	the ne	ervous system.	
	metaphase, anaphase, telophase,	**Meristems	Areas just behind the tips of	**Cell body	The c	entral part of a nerve cell	*Receptor	Cells t	hat detect a stimulus.	
	cytokinesis.	inclustering	roots and shoots where cell		conta	ining its nucleus.	*Response	The ac	tion that the nervous system	
**Prophase	The membrane of the nucleus		division and differentiation	**Dendron	The lo	ong parts of a nerve cell		makes	shappen.	
	breaks down and spindle fibres		happens.	and axon	carrvi	ng impulses towards the cell	*Effector	The bo	ody part that produces the	
	start to form.	**Importance	To produce all the different		body	(dendron) and away from it	2.1.0000	respor	esponse, often a muscle.	
**Metaphase	Spindle fibres fully form and	of	types of cell a plant needs such		(axon)	**Voluntary	A stim	ulus is detected by a	
	chromosomes line up across the	differentiation	as root hair cells and xylem cells.	**Mvelin	A fatt	y laver around the axon and	movement	recept	for, causing an impulse to be	
	middle of the cell.	in plants		sheath	dendi	on that insulates it to		carried	d by a sensory neuron to the	
**Anaphase	Chromosome copies separate	**Calculating	% change = (final value – starting		preve	nt the impulse from escaping		brain.	Relay neurones in the brain	
	and move to each end of the cell.	percentage	value) / starting value x 100		and s	peeds the impulse up.		decide	what to do and send	
**Telophase	A new membrane forms around	changes						anothe	er impulse down a motor	
	each set of chromosomes to form				6. Neu	rotransmission		neuro	n to the effector (muscle) to	
	two nuclei.	,	4. Stem cells	**	The travelling of an impulse		cause		a response.	
**Cytokinesis	The two new cells fully separate.	*Stem cell	A cell that can differentiate when	Neurotransn	nission	along a neuron and into	*Reflexes	Autom	natic responses that happen	
*Cancer	When mitosis happens out of		it divides, to produce two			another.		very a	uickly without conscious	
	control forming large lumps of		different cells.	**Dendrites		Branches at the beginning		thoug	ht to keep the body safe.	
	cells called tumours.	**Embryonic	A stem cell that can become any			of a dendron that connect	**Reflex arc	Mover	ment is caused in the same	
	2 Animal grouth	stem cell	kind of cell. Found in developing			to receptor cells or another		way as	s for voluntary movement.	
*Cucud	z. Animai growth		embryos.			neuron.		except	t the spinal cord makes the	
Growth	increase in size due to increased	**Adult	A stem cell that can only become	**Axon term	ninals	Branches at the end of an		decisio	on without needing the brain	
1	numbers of cells.	stem cell	a few types of cell. Found in			axon that connect to a		to thin	nk. Л	
			animals after birth.			muscle or another neuron.			<u> </u>	

C1 & 2: States of matter and separating substances

Lesson sequence

- 1. States of matter
- 2. Mixtures
- Filtration and crystallisation 3.
- Paper chromatography 4.
- 5. Distillation
- 6. Core practical investigating inks (CP7)
- 7. Drinking water

1. States of matter		
*Particle	The tiny pieces that all matter is	
	made from.	
*Atom	The smallest independent particle.	
	Everything is made of atoms.	
*Molecule	A particle made from two or more	
	atoms bonded together.	
*State of	Whether a substance is solid,	
matter	liquid or gas.	
*Particle	A theory that uses the idea of	
model	particles to explain the differences	
	between solids, liquids and gases.	
*Solid	Particle arrangement: Regular	
	pattern, touching each other.	
	Particle movement: Vibrating	
	around a fixed point.	
*Liquid	Particle arrangement: Random,	
	touching each other.	
	Particle movement: Moving	
	around	
*Gas	Particle arrangement: Random	
	Particle movement: Moving	
	quickly	
*State	Solid to liquid = melting	
changes	Liquid to solid = freezing	
	Liquid to gas = evaporating or	
	boiling	
	Gas to liquid = condensation	
	Solid to gas = sublimation	
	Gas to solid = deposition	

**Heating Temperature rises as you heat curve for a solid, levels out as it melts, continues rising once fully liquid pure substance levels out whilst boiling and rise again once fully gas. temperature (°C) vapour boiling 100°C liquid to vapour melting 0°C liquid solid heating to liquid

solid

heating

	2. Mixtures	
*Element	A substance made from only one	
	type of atom.	
*Compound	A substance made from two of	
	more different elements bonded	
	together.	
*Mixture	A substance made of two of more	
	substances (elements or	
	compounds) mixed but not bonded	
	together.	
**Melting	Mixtures do not melt at a fixed	
point of	temperature but melt gradually	
mixtures	over a range of temperatures.	
**Heating	The flat sections of the heating	
curves of	curves of a pure substance are	
mixtures	sloped for a mixture.	

а	3. Filtra	ation and crystallisation	ation 4. Paper chromatography		
	*Dissolve	When a substance mixes with a	*Paper	A method of separating out	
d,		liquid by breaking down into	chromatography	mixtures of liquids to show	
es		individual particles (atoms or		what is in them, by letting	
		molecules).		them travel up a piece of	
	*Soluble	When a substance can be		chromatography paper.	
		dissolved by a liquid.	*Chromatography	1. Draw pencil line on paper	
	*Insoluble	When a substance can't be	method	2. Place sample spot on line	
		dissolved by a liquid.		3. Place paper in solvent,	
	*Filtration	A method of separating a		with solvent below pencil	
		mixture of a liquid and an		line.	
		insoluble solid by passing it		4. Allow solvent to soak up	
		through a filter paper.		the paper	
time	**Residue	The solid that gets left behind in		5. Stop when solvent near	
		the filter paper.		top, and mark how far it	
	**Filtrate	The liquid that passes through		gets.	
		the filter paper.	**Stationary	The substance the solvent	
le	**How	The filter paper contains many	phase	moves through – usually	
	filtration	tiny holes. The water molecules		paper (Note: technically it is	
al la	works	are small enough to pass		a thin layer of water from air	
a		through the holes, the solid		that is bound to the paper	
		particles are too big and get		molecules)	
ne		trapped.	**Mobile phase	The solvent.	
dod	*Solution	A mixture of a solute dissolved	**R _f (retardation	R _f = spot distance / solvent	
ueu		in a solvent.	factor)	distance	
	**Solvent	A liquid that has dissolved a	**Uses of R _f	R _f enables you to identify a	
,		substance, for example water.		substance because for a	
, 	**Solute	A solid that has been dissolved,		given solvent and stationary	
		for example salt.		phases, it is unique to each	
	*Crystallisation	A method of collecting the		substance.	
	-	dissolved solid from a solution	**Uses of	- To tell between pure and	
		by heating it so that the solvent	chromatography	impure substances	
-		evaporates away.		 To identify substances by 	
↗ _	**Risks of	As the solvent boils away, the		comparison with known ones	
	crystallisation	hot solution can spit, so you		 To identify substances by 	
	-	should wear safety goggles to		calculating R _f .	
		protect your eyes.			
	China OTTO	Copper China College Come	Solvent		
	dish	sulphate dish sulpha	te Front	→→● 1 î	
	->2223	Boiling	Separated		
	Wire	water	Dyes		
14	gauze				
tes)		Tripod	Filter Paper		
r	Burner -	stand The			
	-				

10

Solvent -

+

5. Distillation			
*Distillation	A method used to collect pure		
	liquid from a solution, such as		
	getting pure water from		
	seawater.		
**Condenser	A glass tube surrounded by a		
	glass jacket containing cold tap		
	water. Used to condense gases		
	back to liquids.		
**How	The solution is heated until it is		
distillation	hot enough for the solvent to		
works	boil. The solvent is then passed		
	through a cool condenser		
	where it turns back to liquid.		
	The solute does not get hot		
	enough to evaporate and stays		
	where it is.		
**Anti-	Jagged grains of glass that are		
bumping	added during distillation to		
granules	prevent violent boiling.		
*Fractional	A type of distillation used to		
distillation	separate mixtures of two or		
	more liquids.		
**How	The liquid with the lowest		
fractional	boiling point boils first and can		
distillation	be collected, then the next boils		
works	and so on.		
**Fractionating	A tall glass column used during		
column	fractional distillation that gives		
	a better separation of the		
	liquids by producing a		
	temperature gradient.		
_	water out Ĵ		
	condenser		
	ريكال		
sea) water in pure		
water	water		
t			
near			

*CP7 -	Measure how far each of your	
Chromatogra	aby snots has moved from the line	
	and how far the solvent has	
	moved Bf = cost distance /	
	moved. RI = spot distance /	
* 007	The information inte	
*CP7 -	The Ink separates into	
Chromatograj	phy multiple different spots. The	
results	one that moves furthest is	
	most soluble in the water.	
	7. Drinking water	
*Potable water	Water that is safe to drink.	
*Desalination	Producing pure water from	
	seawater.	
**Purifying	The seawater is distilled: heating	
, seawater	the water to produce water	
	vapour and condensing it back to	
	liquid. Uses lots of energy.	
**Uses of	Pure water has to be used when	
pure water	chemists analyse substances to	
-	fins out what they contain. Tap	
	water contains many dissolved	
	substances that could interfere	
	with this.	
**Water	Water is passed through a	
	sedimentation tank. to allow	
treatment in	rediment to settle out it is	
treatment in the UK	sediment to settle out. it is	
treatment in the UK	sediment to settle out, it is passed through a filtration tower	
treatment in the UK	sediment to settle out, it is passed through a filtration tower to remove floating particles	
treatment in the UK	sediment to settle out, it is passed through a filtration tower to remove floating particles, chlorine is added to kill bacteria	

CYBERSECURITY

Key words			
adware	adverts for products a user may be interested in, based on internet history		
authentication	verifying the identity of a user or process		
biometrics	'password' created from the user fingerprint, iris, retina, facial, voice		
blagging	inventing a scenario to obtaining personal information		
САРТСНА	Completely Automated Public Turing Test To Tell Computers and Humans Apart		
DoS/DDoS	Denial of Service attack/Distributed Denial of Service		
encryption	mathematically converts data into a form that is unreadable without a key		
firewall	checks incoming and outgoing network traffic for threats		
hacking	gaining unauthorised access to or control of a computer system'		
malware	a variety of forms of hostile or intrusive software		
penetration testing	testing a network/program for vulnerabilities		
pharming	redirecting web traffic to fake websites designed to gain personal information		
phishing	messages designed to steal personal details/money/identity		
ransomware	virus which locks a computer and encrypts files until a "ransom" is paid		
script kiddies	hackers with no technical hacking knowledge using downloaded software		
shouldering	directly observing someone enter personal details e.g. PIN number, password.		
social engineering	manipulating people so they give up personal/confidential information		
spyware	gathers information about a person or organisation without their knowledge		
trojans	masquerades as having a legitimate purpose but actually has malicious intent		
viruses	self-replicating software attached to another program/file		
worms	Replicate and spread through the network		

Cybersecurity looking at common attacks and methods to protect ourselves and our networks against these attacks.

Data Protection Act 2018:

All organisations and people using and storing personal data must abide by the DPA principles . It states how data should be stored/accessed and what rights a data subject has for the protection of their data. **Computer Misuse Act 1990: It is an offence to:**

1. have unauthorised access to computer material

2. have unauthorised access with intent to commit or facilitate the commission of further offences

3. commit unauthorised acts with intent to impair, or with recklessness as to impairing, the operation of a computer.

passwords

Hacking in the context of cyber security is gaining unauthorised access to or control of a computer system . Unethical versus ethical hacking Penetration testers (pen testers) are people who are paid to legally hack into computer systems with the sole purpose of helping a company identify weaknesses in their system.

firewall encryption

Anti-malware

Network and System security measures include:

biometrics

User authentication

Penetration testing

User permissions

Auto updates

Please select all the cats!

MICRO-BITS

The micro: bit is a pocket-sized computer that introduces you to how software and hardware work together. It has an LED light display, buttons, sensors and many input/output features that you can program and physically interact with.

Keywords	
Micro:bit	A small computer with a microprocessor that can execute a single program at a time.
Buttons	Capture user input and makes things happen
LED display (Light Emitting Diodes)	5x5 LED matrix output used to display information.
Light Sensor	Input, measures how much light is falling on the micro: bit.
GPIO (General-Purpose Input Output) pins	Input and output connects headphone, sense touch and add other electronics.
Temperature sensor	Input measures how warm the environment is.
Compass	Input, finds magnetic north or measures magnetic field strength
Accelerometer	Input detects gestures and measures movement in 3 dimensions.
Radio	Communication input and output allows communication with other devices
Algorithm	A set of instructions to be followed to complete a given task or solve a problem.
Program	A sequence of instructions used by a computer.
Sequence	The order which the computer will run code in, one line at a time.
Selection	A decision made by a computer, choosing what code should be run only when certain conditions are met.
Condition	Checking to see whether a statement or sum is true or false.
Iteration	When a section of code is repeated several times – also known as looping.
Variable	Something which can be changed in a computer. Made up of a name and some data to be saved.

Python with data

- 1. Buttons: input
- 2. LED display: output
- 3. Light sensor: input
- 4. Pins GPIO: input/output
- 5. Pin 3 volt power
- 6. Pin Ground

Python is a **text** based **programming language**. That can be used to create programs, games, applications and much more!

- 1. Radio & Bluetooth antenna
- 2. Processor & temperature sensor
- 3. Compass
- 4. Accelerometer
- 5. Pins
- 6. Micro USB socket
- 7. Single LED
- 8. Reset button
- 9. Battery socket
- 10. USB interface chip

A program is a set of precise instructions, expressed in a programming language. Translating the programming language is necessary for a machine to be able to execute the instructions. To execute a Python program, you need a Python Interpreter. This is a program that translates and executes your Python program.

IT AND THE WORLD OF WORK

Keywords		
Local software	 Needs time to be installed on all computers Licences may be bought for staff who do not use all of the available software in the package Has to be maintained and updated by maintenance people Users must be using the computer on which the software is installed 	
Cloud storage	 Files are stored on remote servers When you want to access the file or media, they are downloaded or streamed to your device Files or media can also be uploaded to the cloud for storage (useful for backups) Files or media can be synchronised on more than one device so that each device has the same content The amount of storage can be increased or decreased as needed (it's scaleable) 	
Ad hoc network	Created with a temporary device-to-device connection without the need for a connection to a Wi-Fi access point or router	
VPN	A VPN will route your data traffic via the virtual server. This will hide/cloak your data from potential hackers	
Mental well-being	Mental well-being describes your mental health, how well you cope with day-to-day life, how you feel, and how confident you are (good self-esteem).	

Accessibility tools

Technology is transforming the way individuals with a disability access the world around them. This increases the opportunity for these individuals to successfully develop a career of their choice.

- Voice recognition that converts spoken word to digital text
- Screen readers that read screen text out loud
- Closed captioning or subtitles
- Motion or eye tracking
 - Switch devices, which take the place of mice or keyboards

Reader pen

so	The impact of Technology Positive	Traditional vs m	odern workplace
e is will cope (good	 Apps can encourage physical activity Enhances access to learning Wearable technology can track heart rate Diabetics can track blood sugar levels and receive warnings if it is high or low, helping them to manage their well-being Allows flexibility in choosing a working style Negative Can reduce sleep quality Eye strain/poor vision Repetitive strain injuries Physical inactivity can lead to weaker muscles Overuse can lead to: Loneliness, Depression, Anxiety 	 Traditional Takes time to travel to and from the workplace Formal work wear Desks/workstations Labour-intensive tasks Slow communication Sociable 9-to-5 hours 	Modern Use of technology allows flexibility Teams can be local, national, or global Communication can be immediate Data/information is sent digitally and Chick ly increased productivity Can be isolating

BLENDER - MEDIA ANIMATIONS

Stop motion - manually animate every frame of the animation e.g. Shaun the Sheep	Keyframe animation - pick the important locations, the keyframes and the computer works out the rest (called tweening) e.g. Pixar films	
 slower to make animations More difficult to edit 	 Faster to make animations Easier to edit Smoother animations Repeatable 	

Key words		
add	colour	cut
edge	knife tool	extrude
face	keyframe	focus
edit	vertex	location
loop	tweening	object
organic	proportional	rotate
render	ray tracing	scale
timeline	subdivision	mode

Definitions	
Face:	A surface made up of three or more sides. Faces are often referred to as polygons.
Vertex:	A point where one or more edges meet
Edge:	A line connecting two vertices
Objects:	Scenes are made up of geometric, control, lamp and camera objects
Keyframes:	Used for tracking change, a key is a marker in time
Ray tracing:	Rendering that involves tracing the path of a ray of light through the scene
Rendering:	The process of computationally generating a 2D image from 3D geometry
Subdivision:	Creating smooth higher poly surfaces which can take a low polygon mesh as input.
Proportional editing:	Transforming selected elements
Extrude:	Extend an object 40

Smart Materials

A smart material has a property that can change depending on its environment. This change can be reversed if the environment changes again.

Туре	Smart Property	Uses	
Thermochromic	Change colour	Plastic strip thermometers	
pigments	with temperature	Mugs or spoons that	
		change colour when hot	
		Test strips on batteries	
Photochromic	Change colour	Lenses in sunglasses that	2 104 9 40
pigments	with light	get darker as the light gets	100.4 100 3.8 3
		brighter	6.8 98.6 36 37
		Security markers that can	35 95
		only be seen in UV light	÷ Ö
Shape Memory	If bent, will return	Spectacle frames	
Alloy (SMA)	to their original	Sensors in fire sprinkler	
	size when heated.	systems	
		Electric door locks	

How to reduce our impact on the environment?

- If non-renewable materials are used such as plastic (oil) **carbon emissions** are given off resulting in global warming.
- Choosing biodegradable materials means they will break down naturally when the product comes to the end of its life. Non-biodegradable materials that have not been recycled will end up in the landfill or the sea damaging animals and habitats.
 - Apply the **6Rs** to ensure minimal impact on the planet.

Modern Materials

Туре	Properties	Uses			
Graphene	Hard and extremely strong	Solar cells			
	Good conductor	Ink that conducts electricity			
	Flexible	In the future it could be used to			
		develop flexible technology			
Composite	The polymer is flexible and the glass fibres	Hulls of boats			
Glass Reinforce Polymer	are strong but brittle. Together they make a				
Fibreglass	composite that is tough and strong.				
Composite	Polymers are reinforced with carbon fibres	Crash helmets			
Carbon Reinforced	making it extremely strong.	Frames for high performance			
Polymer		racing bikes			
		Racing cars			
Composite	Cement has good compressive strength but	Construction of buildings and			
Reinforced Concrete	poor tensile strength. This is reinforced with	bridges			
	steel bars which have good tensile strength.	A CARLE			

Microcontrollers are programmable components that acts like a small computer within a single integrated circuit.

Peripheral Interface Controller **PIC** is a commonly used microcontroller

Flowchart program is a set of instructions laid out using flowchart symbols that tells a microcontroller what to do.

Natural and ManufacturedMetalPolymerPaper and BoardsSteam Bending Vacuum PressInjection Moulding ExtrusionInjection Moulding ExtrusionDie Cutter Lithography Printing Screen PrintingDie Catter Lithography Printing Screen PrintingScales of ProductionAdvantages Ingertamanship, prototypes can be tested labour, time consumingDisadvantages Downtime between batchesDie Catsing Imager and Screen PrintingDie Catsing Imager and Screen PrintingBatchVolumes are made for demand which reduces waste, templates and jigs can reused to produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsLithography Imager and BoardsDie CutterContinuous24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, expensive machinery repairsImager and the purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsImager and the purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsImager and the purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machi	Manufacturing Methods						Injection	Extrusion	
Steam Bending Vacuum PressInjection Moulding ExtrusionInjection Moulding ExtrusionDie Cutter Lithography Printing Screen PrintingScales of ProductionScales of ProductionStates of ProductionMassHigh-quality craftsmanship, prototypes can be tested labour, time consumingBatchVolumes are made for demand yroductsDowntime between batchesMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsLithography expensive machinery repairsDie CutterContinuous24/7 production using an automated system, high volumes can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, expensive machinery repairsContinuousState and bulk purchased at cheaper rates, low-skilled workforceExpensive to set up because of specialised equipment, expensive machinery repairsContinuousState and bulk purchased at cheaper rates, low-skilled workforceExpensive to set up because of specialised equipment, expensive machinery repairsContinuousContinuousState and bulk purchased at cheaper rates, low-skilled workforceExpensive to set up because of specialised equipment, expensive machinery repairsContinuousContinuousState and bulk purchased at cheaper rates, low-skilled workforceExpensive to set up because of specialised equipment, expensive machinery repairsConti	Natural and Manufactured Timbers	Natural and Metal Poly Manufactured Timbers		ymer Paper and Boards					
Scales of ProductionAdvantagesDisadvantagesOne offHigh-quality craftsmanship, prototypes can be testedExpensive, requires specialist labour, time consumingBatchVolumes are made for demand which reduces waste, templates and jigs can reused to produce identical productsDowntime between batchesLithographyDie CutterMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, expensive machinery repairsContinuousExpensive to set up because of 	Steam Bending Vacuum Press	g Injection Moulding Extrusion	Injection Moulding Extrusion Blow Moulding Vacuum forming		Die Cutter Lithography Printing Screen Printing	Die Casting		Blow Moulding	
AdvantagesDisadvantagesOne offHigh-quality craftsmanship, prototypes can be testedExpensive, requires specialist labour, time consumingLithographyDie CutterBatchVolumes are made for demand which reduces waste, templates and jigs can reused to produce identical productsDowntime between batchesLithographyDie CutterMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforceExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsContinuousExpensive to set up because of specialised equipment, expensive machinery repairsScreen Printing steiled workforceContinuous24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousExpensive to set up because of specialised equipment, 	Scales of Prod	uction				Molten metal	Ejector di Ejector pins		
One off prototypes can be testedExpensive, requires specialist labour, time consumingLithographyDie CutterBatchVolumes are made for demand which reduces waste, templates and jigs can reused to produce identical productsDowntime between batchesLithographyDie CutterMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, 		Advantages		Disadvantages		Plunger			
prototypes can be testedlabour, time consumingBatchVolumes are made for demand which reduces waste, templates and jigs can reused to produce identical productsDowntime between batchesLithographyDie CutterMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsLithographyDie CutterContinuous24/7 production using an automated system, high volumes can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsLithographyDie CutterWassHigh volumes can be bulk produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsLithographyDie CutterWass24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive machinery repairsLithography useLithography useDie CutterWass24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive machinery repairsLithography useLithography useLithography useLithography useMassExpensive machinery repairsExpensive machinery repairsLithography use <t< th=""><th>One off</th><th>High-quality craftsmanship</th><th>,</th><th>Expensive,</th><th colspan="2">Expensive, requires specialist</th><th></th></t<>	One off	High-quality craftsmanship	,	Expensive,	Expensive, requires specialist				
Batch Volumes are made for demand which reduces waste, templates and jigs can reused to produce identical products Downtime between batches Lithography Die Cutter Mass High volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce required Expensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairs Screen Printing Continuous 24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce required Expensive to set up because of specialised equipment, expensive machinery repairs Expensive to set up because of specialised equipment, expensive machinery repairs Image: Continuous Screen Printing		prototypes can be tested		labour. time consuming					
Which reduces waste, templates and jigs can reused to produce identical productsExpensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousImage: ContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousImage: ContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive machinery repairsImage: ContinuousContinuousContinuousContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive machinery repairsContinuous <th colspan="2">Batch Volumes are made for demand</th> <th colspan="2">Downtime between batches</th> <th>Litł</th> <th>nography</th> <th>Die Cutter</th>	Batch Volumes are made for demand		Downtime between batches		Litł	nography	Die Cutter		
MassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, 	which reduces waste, templates and					Plate Sheet			
Jigs can reduce the produce the intentionMassHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsContinuous24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, expensive machinery repairsContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive machinery repairsContinuousExpensive to set up because of specialised equipment, expensive machinery repairsContinuousContinuousContinuousExpensive to set up because of specialised equipment, expensive machinery repairsContinuous	iigs can reused to produce identical				Water	Blanket Cyfinder	STEEL DIE		
Mass High volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce required Expensive to set up because of specialised equipment, expensive machinery repairs Vacuum forming Continuous 24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce required Expensive to set up because of specialised equipment, expensive machinery repairs Expensive to set up because of specialised equipment, expensive machinery repairs Image: Continuous Image: Continuous	products							CUTTER	
IndexHigh volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce requiredExpensive to set up because of specialised equipment, expensive to set up because of specialised equipment, expensive machinery repairsVacuum formingContinuous24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce requiredExpensive to set up because of specialised equipment, expensive machinery repairsExpensive to set up because of specialised equipment, expensive machinery repairsImage: Continuous	Mass High volumos can be produced		Expensive to set up because of		Impression Cylinder		CARD		
Imaterials can be bulk purchased at cheaper rates, low-skilled workforce requiredspecialised equipment, expensive machinery repairsVacuum formingContinuous24/7 production using an automated 	materials can be bulk purchased at		specialized equipment		Untrin SI	med loots			
Continuous 24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce required to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment, expensive machinery repairs to set up because of specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to set up because of the specialised equipment approach to se	materials can be bulk purchased at		specialised	equipment,	0				
requiredvidedam formingContinuous24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- 	cheaper rates, low-skilled workforce		expensive machinery repairs		185	Vacuum form	ning v Screen Printing		
Continuous 24/7 production using an automated system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low-skilled workforce required bulk bulk heat the special sector to set up because of the special sector to sector to set up because of the special sect		required				vacualition	BLADE		
system, high volumes can be produced, materials can be bulk purchased at cheaper rates, low- skilled workforce required	Continuous 24/7 production using an automated		Expensive to set up because of		reusable patt	ern m	invited sheet		
produced, materials can be bulk purchased at cheaper rates, low- skilled workforce required expensive machinery repairs	system, high volumes can be		specialised equipment,			heater	SCREEN		
purchased at cheaper rates, low- skilled workforce required	produced, materials can be bulk		expensive machinery repairs		thermoplastic		TEMPLATE		
skilled workforce required		purchased at cheaper rates	, low-			sheet of thermoplastic	atmospheric pressure mo	ulded sheet PAPER	
		skilled workforce required						BASE	

6Rs

		-
Refuse	Is the product necessary?	
Rethink	Are there alternative materials or design options that are more sustainable?	
Reduce	Can the product be made from fewer materials? Can the amount of unsustainable materials be reduced?	
Reuse	Can parts of the product be reused in a different product?	D
Recycle	Can the materials used be recycled? If the product made from recycled materials?	4
Repair	Can the product be repaired rather than being thrown away if it breaks?	

Computer Aided Design Computer Aided Manufacture

Computer Arded ManufactureCADThis is using computer software to draw
and model a product.Examples:2D Design, Photoshop, Macromedia
Fireworks and Sketch UpAdvantages:••Designs can be shared
electronically•Accurate•Designs can be easily editedDisadvantages:

- Software and training can be expensive
- Security issues

CAM This is using computer software to control machine tools to make products.

Examples:

Laser Cutter, 3D printer

Advantages:

- Faster
- Complicated shapes are easily produced
- Exact copied are easily made
- Machines can run 24/7

Disadvantages:

High initial set up costs as CAM machines are expensive

Life Cycle Analysis

A Life Cycle Analysis is carried out to assess the environmental impact of a product during its entire life, from cradle-to-grave. It looks at use of materials, use of energy, impact of transporting the materials and the parts of the product at various points in its life.

- Manufacture
- 1. Package
- 5. Use

2.

3.

6. Disposal

Ergonomics and Anthropometrics

Anthropometrics is the practice of taking measurements of the human body and provides categorised data that can be used by designers.

Anthropometrics help designers collect useful data, eg head circumferences when designing a safety helmet. In this example, as there is a large variation in size, the designer would need to build some adjustment into the safety helmet design.

Ergonomics can incorporate the use of **anthropometric data** when designing products to improve the user experience. If a designer doesn't use anthropometric data during the design process, it can lead to a poor user experience that causes discomfort, pain and potential injury. **Ergonomics** is a consideration that leads to a product being designed in a way to make it easy to use. Size, weight, shape, position of buttons and controls are all aspects that contribute to it being ergonomically designed.

Market Pull and Technology Push

Market Pull is when a new product is produced in response to demand from the market.

Technology Push is when a development in materials, components or manufacturing methods leads to the development of a new product.

Product Life Cycle

it is not selling well enough

- 1. Introduction
- 2. Growth
- 3. Maturity
- 4. Decline

autodesk° **Tinkercad**

SketchUp

James Dyson Key Facts

- He is a British inventor
- He is best known for dual cyclone bag bagless vacuum cleaner
- Dyson spent lots of money in research and development with robotics and artificial intelligence being the main focus
- He has developed several products using the latest technology and at the same time reducing impact on the environment by designing them so they use less energy.

dyson

STARCK[®]

He uses 100% recycled materials to manufacture his products

Philippe Starck

Key Facts

- He is inspired by the organic in order to create technologies better adapted to humans – biomimicry
- He uses sustainable materials in his design
- His designs are made from recycled and re-used plastic
- He uses new technologies in his design
- He sees products as extension of the human body
- He creates products with the perfect balance between design and functionality
- He combines technology and an environmental approach.
- His use of industrial practices to manufacture his products

Key Words and Definitions

improved.

Sustainability	The level to which resources can be used	
	without them becoming unavailable in the	
	future.	
Carbon Footprint	Carbon foot print is the	
	measurement/amount of greenhouse gases	
	produced in the production of products.	
Renewable Energy	A source that is quickly real lace by natural	
Source	means and will not run the	
Non Renewable	A source that cannot quickly be replaced and	
Energy Source	will eventually run out.	

	MALIP	-					Ke	<u>y words</u>
	CHOICI	0-0	·	Some p	eople will	make food choices based	1.	Kosher
FOOD CHOICES What makes us choose?			•	Hindui: produc eggs	sm – most a ts; some ve	avoid beef & related egetarians; some avoid	2. 3. 4.	Halal Vegetarian Ovo-lacto vegetarian
Special occasions Culture			È	Judaisr Islam –	n – kosher; halal; avoi	avoid pork & shellfish; d pork & related	5. 6. 7	Vegan Lacto vegetarian Ethical
Likes and dislikes Time of day			·	Buddhi avoid a	sm – most Icohol	are vegetarian or vegan;	7. 8. 9.	Diabetes Coeliac
Morals		Types of ve	getarians	;			10. 11	Gluten Protein
Health conditions Age	Type of vegetarian	Meat Fi	sh	Dairy	Eggs	Vegetarian alternatives to meat	12.	Malnutrition
Cost	Vegan	×>	(X	×	Quorn- cultured fungus	14.	Allergy
Religion	Pescetarian Lacto	××	<	\checkmark	×	TVP- Textured vegetable protein	16.	Epi pen
	Lacto-ovo	×>	<	1	1	roru-soya bean curu		
What is a Vegan diet			eat pro	no ani ducts	mal fles	h /meat/fish and po	ultry	and no animal
What is a lasta vagatar	the second time to				Lin un altre	- (Deter) but not an		the fleet of

	products
What is a lacto vegetarian diet	eat animal produce (Dairy) but not eggs or the flesh of animals/meat/fish/poultry
What is a lacto- ovo vegetarian diet	eat animal produce (Dairy and eggs) but not the flesh of animals/meat/fish/poultry
Why might someone choose to be a vegetarian?	Religious beliefs /Moral beliefs – cruel to kill animals/ Do not like the flavour, texture of meat / Land growing crops can feed many more people than land raising animals / Food scares – BSE, food poisoning, salmonella / Family influence/habits /Peer pressure
What foods can vegetarians get protein from?	Good vegetarian sources are Quorn, Tofu, Soya, Cereals, Pulses, Nuts & Lentils (some may also get this from diary and eggs)
What foods can vegetarians get non- haem Iron from?	Found in pulses, nuts, dried fruit, dark green leafy veg, dark chocolate, cocoa powder, black treacle, curry powder.
What foods can vegetarians get Vitamin B12	Found in yeast extract, marmite and fortified breakfast cereals
Vitamin B12 is needed to:	Needed for energy production, formation of red cells

....

Nutrient Needs of Teens

Nutrient	Reason	Example Foods
Protein	Cope with growth spurts. Boys muscular tissue develops	Omelettes, chicken
Iron	Girls lose iron during menstruation and	Spinach, beef
Vitamin C	could become anaemic if not replaced. Vit C helps absorb iron.	Peppers, strawberries
Calcium	Skeleton grows rapidly. These nutrients	Milk, yogun, kale, tofu
Vitamin D	density.	Tuna, salmon, mackerel

Diet related health conditions

<u>Cardiovascular disease (CVD)</u> - This is the general term that describes disease of the heart or its blood vessels. The term includes coronary heart disease and stroke in which arteries carrying blood around the body become blocked with fatty deposits (cholesterol) and consequently blood flow is reduced. CVD is linked to poor diet and lifestyle traits such as obesity, high blood pressure, a diet high in cholesterol and lack of exercise.

To reduce the outcome of CVD it is important to follow dietary guidelines and eat a diet that is low in saturated fat and instead eat foods higher in unsaturated fat such as oily fish, nuts and seeds, olive oil and the recommended 5-a-day of fruit and vegetables.

<u>Diabetes: type 2</u> - The body may produce too little insulin, or the body has become insulin resistant and cannot utilise the glucose produced by carbohydrates. To help prevent this condition, people should follow the healthy eating guidelines, exercise and maintain a healthy weight. This kind of diabetes usually affects people who are overweight or older. If a person is overweight, they are twice as likely to get type 2 diabetes. Therefore, a high-sugar diet and high-fat diet should be avoided.

<u>Iron deficiency anaemia</u> - Iron is important in making red blood cells, which carry oxygen around the body. Iron deficiency anaemia results in the person affected feeling tired and lethargic because organs and tissues will not get as much oxygen as they need.

Good sources of iron include liver (avoid during pregnancy), eggs, red meat and dried fruit e.g. dried apricots and most dark green leafy vegetables.

Obesity - This is the term to describe a person who is very overweight, with a lot of body fat. It is a common problem in Western society. The method to determine if a person is overweight is to measure their BMI.

Saturated fat: solid at room temperature, mainly animal foods sources include: fatty cuts of beef, pork, and lamb dark chicken meat and poultry skin high fat dairy foods (whole milk, butter, cheese, sour cream, ice cream), tropical oils (coconut oil, palm oil, cocoa butter)lard Unsaturated fats: Liquid at room temperature, vegetable sources, includes mono and polyunsaturated fats.

Food Science Topics

<u>Keywords</u>

- 1. Gelatinisation
- 2. Viscosity
- 3. Consistency
- 4. Dextrinisation
- 5. Caramelisation

....

Carmelisation:Sugar molecules break down when they reach a high temperature causing the sugar to turn brown and change flavour.

FATS

Dextrinisation occurs when starch is exposed to dry heat. Starch in bread, biscuits and cakes with dry heat (toasting/baking) causes the starch molecules to break down to dextrin (brown colour)

Macro-nutrients (are those nutrients we need in large amounts . They all provide us with energy)

Carbohydrates Starch Sugars Dietary fibre

Chemical formula for $G_6H_{12}O_6$

Sugars : Monosaccharide Disaccharide Polysaccharide

a. The starch grains when heated between 62°C and 80° C with the liquid absorbs the liquid. b. As it does so it swells/expands. c. When it is no longer able to hold any more liquid the starch grains burst to release starch causing the sauce to thicken.

Gelatinisation occurs when the starch grains absorb water and ruptures to thicken a sauce or in the cooking of rice and pasta.

Key Words

BMR: Basal Metabolic Rate is the amount of energy we need to keep our body alive. Energy balance: the amount of energy we get from food each day is the same as the amount of energy we use each day.

BMI: is a measure that adults and children can use to see if they are a healthy weight for their height.

Energy dense: foods . containing high amounts of fat and carbohydrates (especially sugar) e.g. pizza, pastry, chocolate bars, pastries, cakes, cookies, meat products i.e. sausages, burgers salami).

Kilocalorie (kcal)/ kilojoule (Kj): units used to measure energy.

PAL (Physical Activity Level): the amount of energy we use for movement and physical activity every day. **Functions in the body.** Everyone needs energy to survive. It allows the body to:

- Move muscles and be physically active
- Produce heat to keep warm
- Send messages to the brain to make nerves work
- Allow the body to grow and develop

Sources:

Carbohydrate: foods containing sugar and starch (1g of carbohydrates = 3.75 /4 kcals of energy)

Fat: foods containing visible and invisible fats and oils. (1g of fat = 9 kcals of energy)

Protein: (1g of protein = 4 kcals of energy)

Energy Balance The amount of energy we take in from food must be used up by our Basal Metabolic Rate and Physical Activity Level.

If we take in more energy from the food we use every day, the energy we do not use will be stored as fat and the body will gain weight. If we take in less energy from food than we use every day, the energy stored in body fat will need to be used and the body will gradually lose weight. This is the basis of weight reducing diets.

Physical Activity Level: Regular exercise is an important part of a healthy lifestyle. Physical activity :

- Reduces risk of developing heart disease, obesity and some cancers.
- Improves health of muscles and skeleton
- Keeps the brain alert and working
- Makes people feel good about themselves.
- Health experts are concerned about the sedentary (inactive) lifestyles due to too much sitting for long periods of time e.g. working at a desk, watching television, using the internet or playing computer games.

The recommended physical activity needed daily is suggested to be:

•5—18 years: aim for an average of at least 60 minutes of moderate intensity physical activity a day across the week

•19-64years: aim to do at least 150 minutes of moderate intensity activity a week or 75 minutes of vigorous intensity activity a week.

Amount of energy needed daily by each nutrient: Carbohydrate: 50%. Most of which should come from starch, intrinsic and milk sugars.

No more than 5% of the energy from carbohydrate should come from free sugars, intrinsic sugar found in fruit and vegetables. Fat: 35% or less eat less saturated fats. Protein: 15%

....

Satchel:one log in guide

How to Log into satchel:one

 At the Log in Screen, Click 'Sign in with Office 365'

Staff	Parent	Student		
Sale High Schoo	I			
Enter email add	ress or username			
Enter password		<		
	Log in			
	Or log in with:			
1 Sign in with Office 365				
(G Sign in with Goo	gle		
R/	W Sign in with PM I	nify		

Sig	n in to your account - Profile 1 - Microsoft Edge — 🗌	
÷	https://login.microsoftonline.com/common/oauth2/authorize?re.	
	Microsoft	
	Sign in	
	No account? Create one!	
	Can't access your account?	
	Next	
	ୠ Sign-in options	

2. Type in your school email address.

Your School Email Address is made up from the year you started Highschool,

Year Started	School Year
23	7
22	8
21	9
20	10
19	11

Follow this with your first initial, second name, and the school domain address (@salehighschool.org.uk)

e.g: 21BDrake@salehighschool.org.uk

Satchel:one log in guide

3. Enter your password.This is a six digit number.(Your teachers can give you)

Microsoft

← 21BDrake@salehighschool.org.uk

Enter password

Password

Forgot my password

Sign in

Welcome to Sale High School Office 365

4. Finally, Office 365 asks about signing in.

Yes can be pressed if your log in is from your phone or own computer.

Logging into Satchel:one in this way is the same on all devices: PC, Laptop, Tablet, iPad, and Phone.

PLEASE BE PATENT!

If you are on a mobile device (phone or tablet) Satchel often 'snaps' back to the original log in screen. Wait for a few seconds about e system will change to your logged in account.