

KNOWLEDGE ORGANISER

NAME & FORM

YEAR 7 AUTUMN TERM

Autumn 1

Key features of Autobiography Writing:

- Non-fiction
- Written in first person (I, we, our, my)
- Describes life experiences
- Usually in chronological order
- Can be in the form of a memoir or diary
- Gives details about thoughts and feelings about life experiences

Key purposes of Autobiographies:

- To Entertain Provide entertainment and enjoyment to readers
- To Inspire Provide thought-provoking ideas and imagery
- To Describe Provide detailed recounts of real-life events

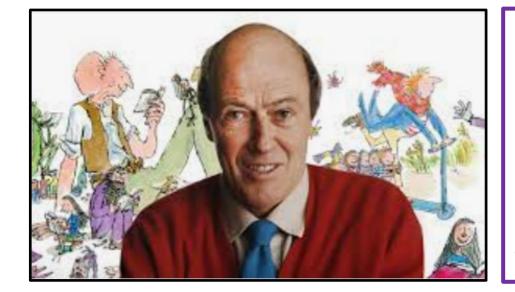
Autobiography

Writing your own account of your life.

Spelling BEE

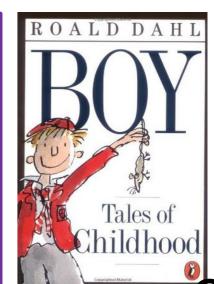
- 1. Autobiography
- 2. Adjectives
- Imagery
- 4. Creative
- 5. Visualise
- 6. Simile
- 7. Adverbs
- 8. Independent
- 9. Personal
- 10. Non Fiction

Tips for learning spellings:


- Look Say Cover –
 Write Check
- 2. Practise by writing out the full word and saying the letters aloud. Then in turn take one letter off the end until you are only writing one letter but saying the others aloud.

Author → Autho_

 \rightarrow Auth__ \rightarrow


 $Aut_{--} \rightarrow Au_{--} \rightarrow$

Roald Dahl

Roald Dahl was a British popular author of children's literature and short stories, a poet. His books have sold more than 300 million copies worldwide. Dahl has been called "one of the greatest storytellers for children of the 20th century." Dahl's short stories are known for their unexpected endings, and his children's books for their unsentimental, macabre, often darkly comic mood, featuring villainous adult enemies of the child characters. 'Boy' is his autobiography.

Key Skills to use in our own writing, or to analyse in a text:

Adjectives: describe a noun

Synonyms: alternative words with the same meaning

Adverbs: describe how an action is completed

Similes: when one thing is compared to another using

the words 'like', or 'as'

Metaphors: when you make a comparison but it is not

literally true.

Can you think of your own examples for each of the above?

Adjectives:

Synonyms:

Adverbs:

Similes:

Metaphors:

|--|

POINT:

In the extract, one way the writer displays _____ is...

EXAMPLE:

For example "...."

This is shown through the use of (mention a technique here) in...

ANALYSIS:

This suggests/this shows...

It could also suggest that...

The word ____ could highlight...

Another word that supports this is _____ because...

READER:

As a reader I understand...

TIF – Phrases for analysis

This (technique) exemplifies...

One interpretation could be... whilst another interpretation is...

This example proves...

This demonstrates...

The technique illustrates...

Autumn 2

Key themes in Fantasy Literature:

- Good vs Evil
- Change
- Heroes/ Villains
- Magic
- o Identity
- Conflict
- Quest for power/Knowledge

Key purposes of Fantasy Literature:

- To Entertain Provide entertainment and enjoyment to readers
- To Inspire Provide thought-provoking ideas and imagery
- To Describe Provide detailed images of imaginary and unrealistic worlds or concept.

Tier 2 Vocabulary

- Enchanted = filled with delight or charmed
- Conflict = a battle or war between two sides
- Disastrous = highly damaged, ruined or destroyed
- Villainous = done with an evil intent

Tier 3 Vocabulary

- Analysis = the examination of the meaning of words or techniques
- Adjective = a word used to describe a noun. E.G. 'scarlet', 'magnificent' or 'disastrous'
- **Imagery** = the use of words to create a picture in the reader's mind
- Figurative Language = metaphorical language used to create an image

Good Vs Evil: The battle between good and evil is very important in the world of fantasy – how will the hero save the day? What monsters or villains will they cross on their journey?

History of Fantasy:

The origins of fantasy can be traced all the way back to Greek Mythology with Gods and Legends fighting mythical creatures such as The Minotaur.

Authors like The Brother's Grimm took fantasy storytelling to a very gory place and wrote the originals of many of our well-known Disney stories today.

Fantasy has since been taken to all corners of both the real and imaginative worlds such as The Shire in The Hobbit or Hogwarts in Harry Potter or even The Endless Woods of the School of Good and Evil. With thousands of creatures created and much magic to be seen.

Fantasy: An unrealistic, impossible or improbable action, event or setting.

Fantasy Recommendations:

Why not look for these in the library for your Accelerated Reader book this term?

- **4** A Monster Calls by Patrick Ness
- ♣ Percy Jackson and the Lightening Thief by Rick Riordan
- ♣ The Hobbit by J.R.R. Tolkien
- The School of Good and Evil by Soman Chainani
- **4** All Souls (A Discovery of Witches) by Deborah Harkness
- **4** Twilight by Stephenie Meyer
- ♣ The Time Traveller's Wife by Audrey Niffenegger
- **Lesson** Children of Blood and Bone by Tomi Adeyemi
- **4** Stardust by Neil Gaiman
- ♣ Mythos by Stephen Fry (Fiction)
- ♣ Who Let the God's Out by Maz Evans

PEA Sentence Structures:

POINT:

In the extract, one way the writer displays _____ is...

EXAMPLE:

For example "...."

OR

This is shown through the use of (mention a technique here) in...

ANALYSIS:

This suggests/this shows...

It could also suggest that...

The word ____ could highlight...

Another word that supports this is _____ because...

As a reader I understand...

TIF – Phrases for analysis

This (technique) exemplifies...

One interpretation could be... whilst another interpretation is...

This example proves...

This demonstrates...

The technique illustrates...

Spelling BEE

- 1. Convention
- 2. Genre

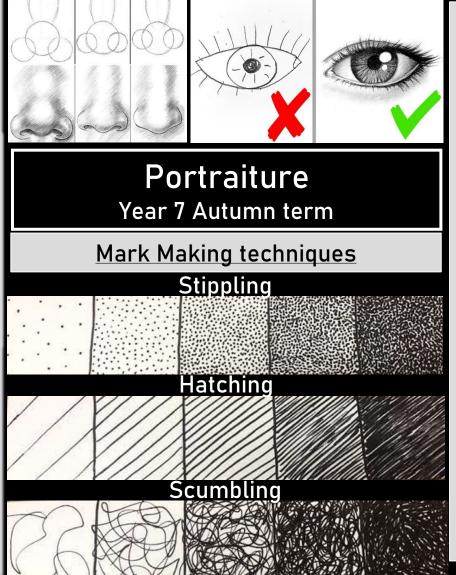
- 4. Analysis
- 5. Author
- 6. Magic
- 7. Character
- 8. Heroic
- 9. Villainous
- 10. Adventure

Tips for learning spellings:

- Look Say Cover Write Check
- 2. Practise by writing out the full word and saying the letters aloud. Then in turn take one letter off the end until you are only writing one letter but saying the others aloud.

Author \rightarrow Autho_ \rightarrow Auth__ \rightarrow Aut___ \rightarrow Au____

Florian Nicolle


Key features:

Neutral- line- bold- scratchycollage- shadows- highlightsmark making.

Working in the style of an artist: You need to use these techniques and features in your own study. KEY WORDS – test yourself! (definitions on the next page)

Mark making- Hatching- Crosshatching- Stippling- Scumbling- Blending- Layering –

Texture- Accuracy- Proportion- Neutral colours.

In the style of:

When creating a piece of art in the style of an artist it is very important you thoroughly understand their techniques in order to copy them effectively.

Besides using their techniques, you also need to take pride in your work and be as neat as possible. Here are some things to consider:

- Have you used scratchy lines?
- Have you used a range of mark making?
- Have you used correct proportions?
- Is the scale correct?
- Have you included all the detail?
- Is your colour scheme appropriate to the artist?

KEY WORDS AND MEANINGS:		
Mark Making	Mark making describes the different lines, dots, marks, patterns, and textures we create in an artwork.	
Hatching	Small lines drawn quickly to represent specific textures such as fur. Hatch lines can be layered up to create tone.	
Cross-hatching	A shading technique involving the use of small, intersecting lines. The closer the lines are together, the darker the tone.	
Stippling	The creation of shading by using small dots. The closer the dots are together, the darker the tone.	
Blending	The technique of softly mixing two colours or light and dark.	
Layering	Placing one element over another. This could be coloured pencil, paint, collage etc	
Texture	The display of how an object would feel in reality. This can be created through mark making.	
Accuracy	Precision or correctness or exactness, in other words, how much does your work look like the source.	
Proportion	How the sizes of different parts of a piece of art or design relate to each other.	
Neutral colours	Neutral colours A colour without much intensity e.g beige, cream etc.	
Colour code: BLUE= Tier 3 words ORANGE= Tier 2 words Look out for colour coding during lessons		

Colour code: BLUE= Tier 3 words

ORANGE= Tier 2 words

Look out for colour coding during lessons.

Drama Knowledge Organiser

Physical Skills and Techniques

Body **L**anguage

Body language is communication by movement or position, particularly facial expressions and gestures.

Facial Expressions

A facial expression conveys an emotion that tells us about the character and the way they react to the situation

Gesture

A movement of part of a hand or the arm, to express an idea or meaning.

Tableau

In a tableau, participants make still images with their bodies to represent a scene

Levels

The use of different heights e.g. stood up or sat down to show how powerful a character is.

Proxemics

The distance between character/actors and what that means about their relationship/feelings/situation.

THE THREE C's OF DRAMA

Concentration Cooperation Communication

AUDIENCE

The people who watch a performance.

PERFORMANCE

A piece that is presented to an audience.

YEAR 7

INTRODUCTION TO DRAMA SKILLS KNOWLEDGE ORGANISER

Mime

Success criteria for using this technique:

Exaggerated movement

Remember to show the weight and size of the object

Vocal Skills

Pitch

High or low

Volume

Loud or quiet

Pace

Slow or fast

Tone

The emotion in the voice

3 EXAMPLES OF VOCAL TONE:

Angry, happy, shocked

STAGE POSITIONING

Upstage right	Upstage Centre	Upstage left
Stage right	Centre stage	Stage left
Downstage right	Downstage centre	Downstage left

Audience

KEYWORDS		
Mime	Silent art of portraying a character/mood/story though bodily movements	
Exaggeration	Is essential when performing in without the use of your voice	
Melodrama	A genre of theatre that is exaggerated and dramatic	
Gesture	Exaggerated hand and arm actions to communicate	
Tension	Tension of limbs/body when moving helps communicate weight/density	
Stereotype Characters	Characters in their most general form, narrowly defined, often by one exaggerated trait e.g. 'Baddie'	
Slapstick Comedy	A physical kind of comedy based around mild comic violence — smacks in	
Intertitle	Title cards with captions used in silent film	

SUCCESS CRITERIA FOR MIME:

BODY LANGUAGE

EXAGGERATION

GESTURES

FACIAL EXPRESSIONS

FAMOUS SILENT MOVIE ACTORS:

Charlie Chaplin
Lilian Gish

Buster Keaton

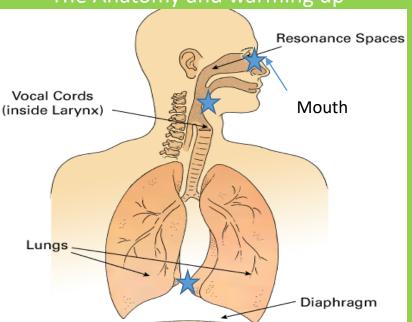
STOCK CHARACTERS

HERO – Moral, strong, handsome

DAMSEL – Moral, innocent

VILLAIN – Evil, manipulative

FOOL – Villains accomplice, idiotic, funny


FAITHFUL SIDEKICKHelps the hero,brave

Music Knowledge Organiser

الثا

The Anatomy and warming up

How to warm up the three areas Mouth:

- Tongue twister
- · Chew the toffee
- 'My Mum'
- Mouth stretches 'AEIOU'

Vocal cords/ Larynx:

- Rollercoaster
- Humming/Singing exercises

Diaphragm and Lungs:

Controlled breathing exercises/square breathing

KEY WORDS – test yourself! (definitions on the next page)

Larynx Vocal chords Enunciation Vocal range
Intonation Pitch Major Minor Diaphragm
Voice Projection Dynamics Crescendo Diminuendo

SINGING SKILLS

Year 7 Autumn Term

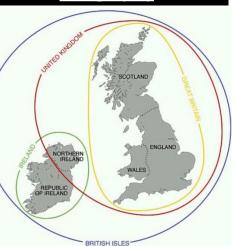
DYNAMIC MARKINGS

Term	Symbol:	Effect:
pianissimo	pp	very soft
piano	P	soft
mezzo piano	mp	moderately soft
mezzo forte	mf	slightly loud
forte	f	loud
fortissimo	ff	very loud
fortepiano	fp	loud then soft
sforzando	sfz	sudden accent
crescendo	<	gradually louder
diminuendo	>	gradually softer

Stage Presence:

When performing a piece of music to an audience it is very important you sound good and present yourself well.

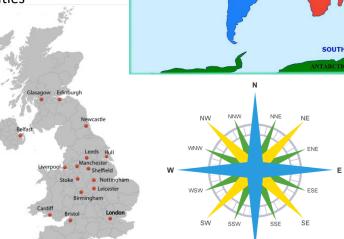
Besides knowing your words and singing in tune there are some basic elements you need to consider:


- ENUNCIATE your words clearly
- PROJECT your voice by engaging your diaphragm
- Face the AUDIENCE
- ENGAGE with the music look like you are enjoying e.g. SMILE if it is a happy piece
- WATCH the conductor/ group leader
- Don't fidget
- Stand up straight GOOD POSTURE gives the impression of confidence

KEY WORDS AND MEANINGS:		
Vocal Range	The range of pitches that each individual human voice can reach.	
Intonation	The variation in the pitch level of the voice (the ups and downs), but in such languages as English, stress and rhythm are also involved. Intonation conveys differences of expressive meaning (e.g., surprise, anger, wariness).	
Diaphragm	A thin muscle that sits at the base of the chest and separates the abdomen from the chest. It contracts when you inhale - which pulls air into the lungs. When you exhale, the diaphragm relaxes and the air is pushed out of lungs.	
Larynx	Otherwise known as the voice box, it is an organ in the top of the neck involved in breathing, producing sound and protecting the trachea against food aspiration.	
Voice Projection	The strength of speaking or singing whereby the voice is used powerfully and clearly.	
Enunciation	The act of pronouncing words or parts of words clearly	
Pitch	How high/low a note is	
Major tonality	A 'happy' sounding collection of notes	
Minor tonality	An 'unhappy' sounding collection of notes	
Dynamics	Volume	
Crescendo	Gradually getting louder	
Diminuendo	Gradually getting quieter	

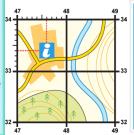
Geography Knowledge Organiser

Year 7: Foundations of Geography


The UK includes the countries of Northern Island, Wales, England and Scotland. It is in the continent of Europe.

A continent is a large landmass that is split up into countries. There are seven continents These are: North America, South America, Europe, Africa, Asía, Oceanía and Antarctica.

Map of Major UK cities

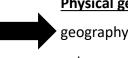


PACIFIC

ATLANTIC OCEAN

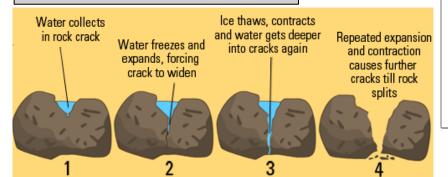
INDIAN

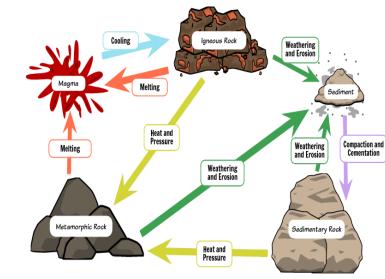
When reading grid references always read the bottom left corner



The Rock Cycle

Human Geography- this is geography that relates to people (manmade)




Physical geography- this is geography that relates to the nature

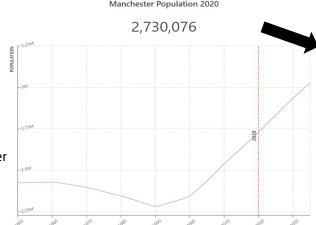
Population is all people living within a particular place. In geography, when we refer to population, we simply mean people.

Freeze-Thaw Weathering

Geography Knowledge Organiser

What did early settlers look for in a site?

A defendable site, e.g. a hilltop or river Good farm land bend, to protect from attackers with fertile soils, so people could


Dry land, so that people could \ build on areas that don't flood

> A local water supply for drinking, washing, cooking and transport

grow crops

Flat land, to make building easier and safer

Local raw materials. e.g. wood and stone, to build homes

Describing and explaining Manchester's population:

Between 1950 and 1960, the population stays the same at around

2.425 million. From 1960 to 1990, the population decreases from

around 2.425 million to 2.30 million. This is because people lost their jobs and so moved

out of Manchester as mills began to close. From 1990, the population of Manchester has increased as people moved into Manchester for work and a better quality of life. In 2020,

the population of Manchester was around 2.725 million. People from all different counties

have migrated to Manchester. This has resulted in Manchester being a multicultural city.

What are urban areas?

An urban area can be described as a built up area e.g towns and cities

A Megacity is a very large city, typically one with a population of over ten million people, for example, Mumbaí and Tokyo

Migration is the movement from one area to another. Push factors, such as high crime rate can make someone want to leave an area and pull factors, such as more jobs available, can make someone want to move into an area.

	Mumbai	Lagos
Population	20 million	21 million
Life expectancy	55 years	53 years
Literacy Rates	89%	90%
No. of people living in slums	6.5 million	12.6 million

What makes a city sustainable?

A sustainable city concept incorporates eco-friendly practices, green spaces and supporting technology into the urban environment to reduce air pollution and CO2 emissions, enhance air quality, and protect natural resources.

Manchester as a sustainable city?

Manchester wants to become a better place for people and nature, by increasing and improving the blue and green spaces in the city. Already 12km of waterways have been enhanced and 12,500 trees have been planted. Parks and green spaces have been upgraded and any new housing developments must look at ways to incorporate green spaces into the plans.

Year 7: Urban Environments

History Knowledge Organiser

Topic 1: Migration Pre-1066

Why did people move to England:

People came to England for multiple reasons.

Pull Factors are positive things to bring people to an area, such as:

- Resources Such as Iron, Zinc and Copper were found in England
- Farmland English soil was incredibly fertile
- Climate England has a good yearly climate for cropgrowing

Push Factors are negative things that make people want to move away from an area, such as:

- Flooding Much of the Anglo-Saxon land was prone to flooding.
- War Many Romans were simply told to come to England during the expansion of the Roman Empire.

Pre-1066 Timeline:

43 AD - Romans invade and rule England

50 AD - The town of Londinium is built (modern London)

410 AD – The Roman Empire abandons England

459 AD – The Anglo-Saxons Invade and rule England

490 AD – The Anglo-Saxons divide England into Seven Kingdoms

789 AD - The first Viking attack on England

793 AD – The Vikings attack Lindisfarne in 793 in a raid on the monastery

829 AD – England stops being seven kingdoms as Anglo-Saxons war against Vikings

865 AD – The Vikings invade with a large army called the Great Heathen Army

878 AD – England ruled by both the Vikings and the Anglo-Saxons – Danelaw established

How did the Anglo-Saxons change England?
The Anglo-Saxons were warring tribes
from Northern Europe, they changed England by:

- Using wood to construct houses and cities
- Split England into 7 kingdoms (Heptarchy)
- Expanded Roman churches. <u>These were called</u>
 <u>Monasteries.</u> An example would be Lindisfarne.
 They acted as hospitals where monks would train and also record history.
- <u>Developed the English language</u>. The Anglo-Saxons spoke Old English and so many of our words come from the language they spoke.

Vikings

793 - 954

How did the Romans Change England?

The Romans were master builders and statesmen who changed England by:

- Introducing <u>running water</u> by creating aqueducts to major towns and cities in England
- Building <u>paved roads</u> to and from major cities to improve travel
- Providing a <u>written language (Latin)</u> to the people of England to record laws
- Christian worship was introduced
- Coinage was used to trade goods

How did the Vikings change England?

Vikings were raiders and traders from Scandinavia. They changed England by:

- <u>Raiding and pillaging</u>
 the monasteries (like Lindisfarne)
 and taking loot back to Scandinavia
- Introducing the <u>Danelaw</u> in England (split it in two)
- Further developing the English language.
 Norse words mixed with Old English words to change our language.

What is Bias?

Bias is where a one-sided opinion is formed by only using selective evidence to support your point of view. A biased historical account might only reveal some information and not include other important parts.

History Knowledge Organiser

Topic 2: The Norman Conquest

Why was there a succession crisis?

In 1066, England was ruled by an Anglo-Saxon king called Edward the Confessor. By 1066, he was old and dying and did not have any heirs who would succeed him. When he died, there were several contenders to the throne:

Who was Harold Godwinson and what was his claim?

- He was an Anglo-Saxon.
- The son of a powerful Earl.
- Edward's brother in law.
- Helped Edward to govern.
- The Witan supported him.
 - Claimed that Edward had promised him.

Who was William and what was his claim?

- He was a Norman.
- He was powerful and was the Duke of Normandy.
- Edward's cousin.
- Claimed both Harold and Edward had promised him.
- Had the Pope's support.

Who was Harald Hardrada and what was his claim?

- He was a Viking.
- He was powerful and was King of Norway
- His father Harthacnut
 - had been promised
- He was a fierce warrior

The Battle of Stamford Bridge – 25th September 1066 – Harold vs Harald

Harold Godwinson had crowned himself King of England on the 6th of January 1066. He was worried about an invasion from William in the South and so had stationed all his men to defend the coast. However, Harald Hardrada had launched an invasion in the North, defeating the Anglo-Saxons earlier on the 20th of September. Hearing this, Godwinson hastily recruited his troops and marched 185 miles in 4 days to meet the Viking invaders in battle! The Vikings were taken completely by surprise, Hardrada's troops had been celebrating and had even left their armour on their ships! During the battle, Hardrada was killed by an arrow to the throat and the Viking army was defeated.

From Stamford Bridge to Hastings

Duke William had been waiting for the wind to allow him to sail across the English Channel and invade England. He had been ready since August but the wind refused to change. However, in late September William was able to cross the channel, 700 ships carried 7000 Norman warriors ready to claim the throne for William.

This was during the time that Harold was away fighting Harald at the Battle of Stamford Bridge. Harold Godwinson had to march his men all the way from Stamford Bridge, in the north of England, back down south to Hastings! He did not even have timed reinforce his army with new soldiers!

History Knowledge Organiser

Topic 2: The Norman Conquest

The Battle of Hastings – 14th October 1066 – Harold vs William

Godwinson established a strong defence on top of a hill and ordered his men to form a shield wall. William had brought Infantry, Archers and, perhaps most importantly, Cavalry, men mounted on horses. The armies of Godwinson and William were equal in number, and Godwinson was able to keep a strong defensive line, withstanding barrages of arrows from the Norman archers. The shield wall proved too strong for the Norman Infantry and Cavalry. Here, William deployed the Feigned Retreat tactic. His cavalry stormed up the hill to the Shield Wall and pretended to run away. The Anglo-Saxons, thinking they had won, charged down the hill only to be surrounded by the much faster cavalry! The shield wall had broken down! Soon the Normans were pushing through and, following a final hail of arrows, Godwinson was struck in the eye and died. The Normans had defeated the Anglo-Saxons! They won because of:

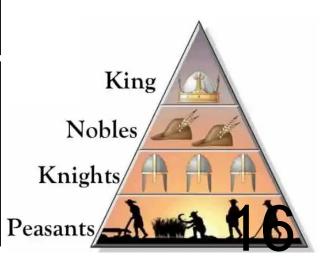
William's Strengths:

- The Feigned Retreat William was able to break down the Anglo-Saxon shield wall by using his cavalry. The Anglo-Saxons could not counter the speed of this tactics.
- Leadership William was a smart military leader. He prepared multiple loyal men and knew how to set them up. He even risked his life in the fighting, but by proving he was not dead mid-battle he could keeping his men fighting.
- Troops The Norman army was made up of Infantry, Cavalry and Archers.
 They had Crossbowmen, who used deadly Crossbows to punch through shields.

Godwinson's Mistakes

- Morale Godwinson's troops had to march 185 miles from Stamford Bridge to Hastings to fight again! This left them tired, hungry and with low morale.
- Troops Most of Godwinson's experienced troops, the Housecarls, had died at Stamford Bridge. To face the Normans he had the Fyrd who were poorly trained.
- Death Godwinson died after the shield wall broke. As a result the Anglo-Saxons stopped fighting.

DARQ D


Luck

- The Wind William had been waiting for the wind to change. By luck it changed just after the Anglo-Saxons had fought the Vikings.
- Near Death William's horse died during the Battle and he could have been crushed underneath it! He was uninjured which was very lucky!

How did William Control England after Hastings?

- The Harrying of the North In 1069, there was an Anglo-Saxon revolt against William the Conqueror in the North of England. William took his army and defeated the rebellion. Under his orders 100,000 Anglo-Saxons were killed, villages were burnt down and the soil was "salted" salt was thrown in the ground so that nothing could grow!
- The Feudal System The Feudal system was a system of order in the Medieval period. It established a social order in which people worked in return for land from their lords.
- Domesday Book The Domesday Book was a record of all the people in England and what they owned. William used this to see how much tax he could raise from them.

Religion and Ethics Knowledge Organiser

Keywords

Does God Exist?

Atheist- someone who does not believe in God Agnostic- when you're not sure if God exists.

Theist- believer in God.

Monotheism- belief in one God.

What is God like?

Eternal - without beginning or end, timeless.

Creator- start point of the Universe and life on Earth.

Transcendent – beyond this world, God cannot fit into our categories.

Omnipotent- all powerful

Omniscient- all knowing.

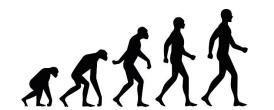
Omnibenevolent- all

loving/all good.

<u>Cosmological/First Cause</u> <u>Argument for the Existence of God</u>

St Thomas Aquinas

St Thomas Aquinas (1225-1274 CE) argued that **all things that happen have a cause**, for example when a football travels through the air we know it is because a player kicked it but if we were to go further back we might say that player kicked the ball because the last player passed it to them and the player before passed it to them and so on. **Aquinas argued all the causation and motion we observe can be traced back to God**, who is an uncaused cause or unmoved mover.


YEAR 7 AUT 1 - DOES GOD EXIST?

What is Humanism?

Humanism is the rejection of Religious teaching in favour of reason. Humanists may have a variety of different beliefs but they are united by the belief that it is possible to live an ethical life without Religion. They base ethical decisions on Empathy & Reason. They also believe that this is the only life that we have and therefore we should focus on being happy in this life rather than in an afterlife.

Richard Dawkins

Richard Dawkins argues that science explains and proves the big bang theory and that humans and life evolved on Earth. This contradicts religious stories about creation.

<u>Teleological/Design</u> <u>Argument for the Existence of God</u>

William Paley

William Paley (1743-1805) compared the design of the universe to finding a watch. He argued that if you were walking and found a watch lying on the grass and saw how complicated it was you would have to assume someone made it. Even if you

had never seen a watch before as each part works together to tell the time you would still assume that someone had designed it. Paley compared this to the design of the world. Someone who looks at the universe must conclude that there is a designer because of how perfectly the universe fulfils its function of sustaining life.

David Hume

David Hume argues that God cannot be both omnipotent and omnibenevolent while evil exists.

Benevolent

God

Omniscient Omnipotent

Religion and Ethics Knowledge Organiser

Keywords

Monotheism- belief in one God.

Covenant – A promise between Humans and God.

Prophet – A messenger of God.

Torah – Holy Book of Judaism.

Mitzvah/Mitzvot -

Hebrew word meaning commandment also used to mean good deed.

Kosher – Fit or Correct, food that is fit to eat.

Shabbat – Jewish day of rest.

Transcendent – beyond this world, God cannot fit into our categories.

Omnipotent- all powerful

Omniscient- all knowing.

Omnibenevolent- all loving/all good.

Kosher

Kosher is the set of dietary requirements followed by many Jewish people. They dictate; what foods can be eaten; how animals need to be prepared; what foods can be eaten together. Whilst it is an individual decision whether to follow all of the rules of Kosher there is specific guidance to say that if something is needed to save a person's life (for example medicine or if a person faces starvation) then it is okay to break the rules.

YEAR 7 AUT 2 -What is Judaism?

Who is Abraham?

Abraham was the First Patriarch (the father of the Jewish people). Abraham is important in Judaism, Christianity and Islam.
Abraham made a

Isaac

Moses

Abrahams Second Son beli to be Jewish Line of Des Ishmael

covenant with God, for obeying God he would be

given Land
Blessings and

Descendants. The sign of the covenant would be circumcision.

The Ten Commandments

- 1) I am your G-d.
- 2) You shall have no other G-d.
- 3) You shall not take G-d's name in vain.
- 4) Remember Shabbat and keep it holy.
- 5) Honour your parents.
- 6) Do not Murder.
- 7) Do not commit Adultery.
- 8) Do not Steal.
- 9) Do not lie.
- 10) Do not be jealous.

Shabbat

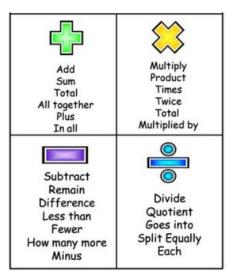
Shabbat is the **Jewish day of rest**, it runs from sunset on Friday until sunset on Saturday. If the rules of shabbat are followed strictly then people do not touch money or go to the shop or do any work, cleaning, cooking, not even switching on a light! Every Jewish family will decide for themselves how they want to celebrate shabbat. Traditional shabbat celebrations include lighting candles (before Friday sunset), blessing wine, eating together and attending synagogue, and it finishes with a **blessing called Havdalah**.

Who is Moses?

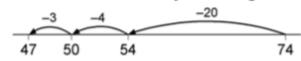
Moses was born into a Jewish family when the Jews were slaves in Egypt and he led them to freedom. He is the most important **Prophet** in Judaism, as he is believed to be the only person to have seen God face-to-face. He also received the **Torah** and all **613 mitzvot** from God.

Who is a Jew?

Judaism is not only a religion, it is based on family and community. Many people who do not believe in God still consider themselves Jewish as they were born into a Jewish family. There is also a lot of **diversity in Judaism**. Progressive Jews generally favour following the ethics of Judaism and emphasise the importance of equality whilst Orthodox Judaism also values Jewish ethics but is strict in following the rules.



Place Value and Calculations


Key Words

Place Value: The value a digit takes when placed in a particular position of a number.

Examples

$$74 - 27 = 47$$
 worked by counting back:

×	20	7	
50	1000	350	1350
6	120	42	162
			1512
			1

Year 7

Tip

Multiplication and addition are associative, so you can work them out in any order.

So 3×4 is the same as 4×3 .

4 + 3 is the same as 3 + 4

Questions

a)
$$7 \times 146$$
 b) 34×67 c) 2.9×7.2 4) a) $294 \div 7$ b) $192 \div 6$

ANSWERS : 1) a) 86 b) 194 c) 30.4 2) a) 36 b) 77 c) 6.7 3 a) a) 42 b) 2278 c) 20.88 4) a) 42 b) 32

SEQUENCES

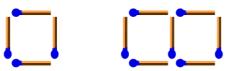
Key Concept

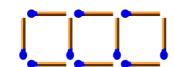
Types of Sequence Sequence as pictures:

Linear sequence:

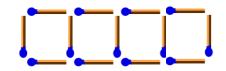
Square Numbers: 1, 4, 9, 16, 25, 36,...

Triangle Numbers: 1, 3, 6, 10, 15, 21


Year 7


Sequence: A list

which is in a particular order following a pattern. **Term:** Each particular part of a sequence. Linear sequence: A sequence which is formed by adding or subtracting the same amount each time.



Examples

Next pattern is:

Sequence = 4, 7, 10, 13, Next two terms are 16 and 19 Term to term rule = +3

Tip

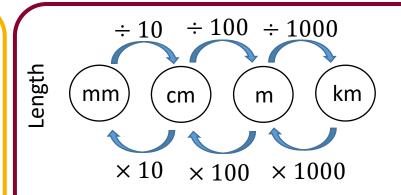
To find the square numbers work out 1x1, 2x2, 3x3, 4x4 etc

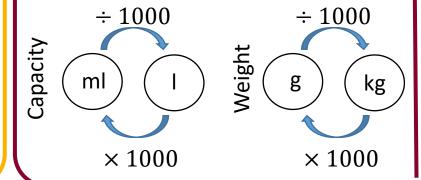
To find the triangle numbers 1, 1+2, 1+2+3, 1+2+3+4

Questions

- 1) Find the next two terms and the term to term rule
- a) 9, 13, 17, 21, ... b) 7, 12, 17, 22, ... c) 9, 7, 5, 3, ... d) 3, 4, 7, 11, 18

METRIC UNITS


Key Concept


Metric units of **length**: mm, cm, m, km

Metric units of **weight**: *Mg, g, kg*

Metric units of **capacity**: *ml, l*

All of these units are **metric** units. They will always use conversions of multiples of 10, eg.10, 100, 1000 etc.

Examples

Convert 600cm to m

Using the chart, to go from cm to m you divide by 100 600 ÷ 100 = 6m

Convert 6.7 litres to ml

Using the chart, to go from litres to ml you multiply by 1000 6.7 x 1000 = 6700

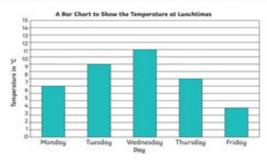
Year 7

Key Words

Length Weight Capacity Metric Convert each of the following:

- a) 12cm into mm
- b) 1783g into kg
- c) 2.5 litres into ml

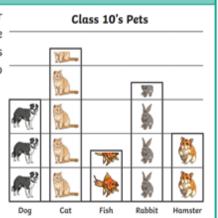
d) 6.8m into mm


0 + × 0 - ÷ =

Statistical Diagrams

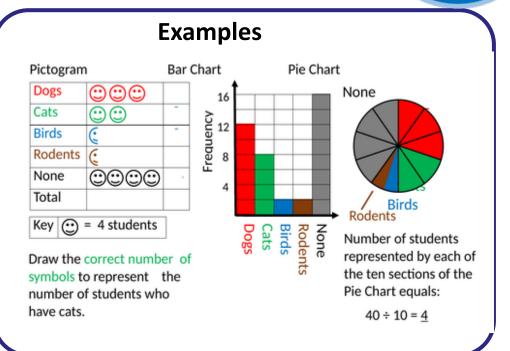
Key Concept

Bar Chart


A bar chart has a horizontal axis and a vertical axis. Bars show the data value of each category. There must be a gap between each bar. The scale of the bar chart is chosen based on the data range.

Pictogram

This graph uses pictures or symbols to represent the data. The pictogram uses one picture or symbol to represent a value.


= 4 Children

Tips

Bar charts have gaps between the bars.

Pictograms must have a key

Key Words

Frequency: Number of times something

happens

Bar chart: Used to display data as series of bars

Pictogram: Symbols used to represent data

Pie chart: Circle where each section represents a

proportion of the data

Year 7

Maths Knowledge Organiser MULTIPLES, FACTORS, PRIMES AND SQUARES

Key Concept

Factors:

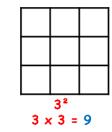
Find these in pairs

12: 1 & 12, 2 & 6, 3 & 4

Primes

2, 3, 5, 7, 11,...

Multiples:


Start with the number itself

7: 7, 14, 21, 28, ...

Square Numbers

1² 1 x 1 = 1

Key Words

Factor: The numbers which fit into a number exactly. **Multiple:** The numbers in

the times table.

Prime: Numbers which have only two factors which are 1 and itself.

Highest Common Factor:

The highest factor which is common for both

numbers.

Lowest Common Multiple:

The smallest multiple which is common to both numbers.

Square: A square number is the result of multiplying a number by itself.

Examples

Lowest Common Multiple (LCM)

Q - Find the LCM of 6 and 7:

6 – 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, ...

7 – 7, 14, 21, 28, 35, 42, 49, 56, ...

LCM = 42

Highest Common Factor (HCF)

Q – Find the HCF of 18 and 24

18 – 1, 2, 3, 6, 9, 18

24 – 1, 2, 3, 4, 6, 8, 12, 24

HCF = 6

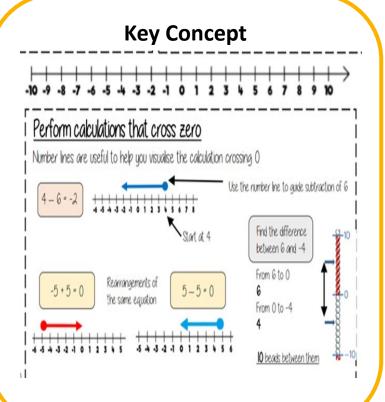
Year 7

 $2 \times 2 = 4$

Tip

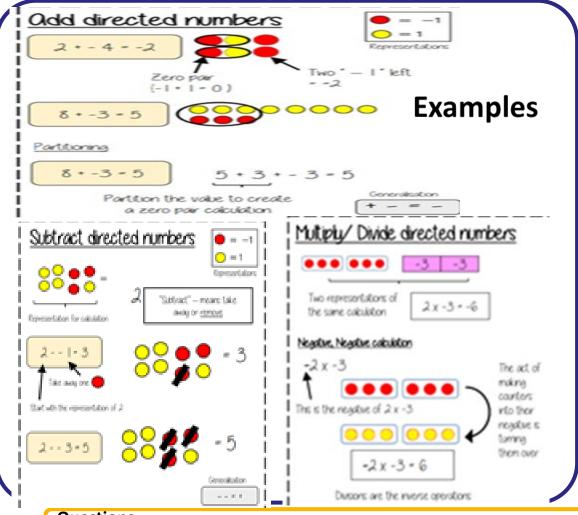
There is only one even prime number which is the number 2. This can be used to help solve lots of problems.

Questions


- 1) List the first 5 multiples of: a) 7 b) 12 c) 50
- 2) List the factors of: a) 12 b) 15 c) 16
- 3) a) Find the LCM of 5 and 7 b) Find the HCF of 20 and 16

5) 9) 1' 5' 3' 4' 6' 15 p) 1' 3' 2' 12 c) 1' 5' 4' 8' 16 3) 9) 32 p) 4 VARMERS: 1) 9) 2' 14' 51' 58' 32 p) 15' 54' 8' 16 3) 9) 32 p) 4

NEGATIVE NUMBERS



Key Words

Subtract: taking away one number from another.

Negative: a value less than zero.

Year 7

Tip ne to help yo

Use a number line to help you when adding and subtracting with negative numbers

MFL Knowledge Organiser

¡Bienvenidos! Listos 1 Mod 1 Aut 1

6 KEY Questions

- 1. ¿Cómo TE llamas? What' are you called?
- 2. ¿Cómo SE llamA? What is he/she called?
- 3. ¿Cómo estás? [friendly] How are you?
- 4. ¿Cómo está usted? [formal]
- 5. ¿Qué tal? How are you?
- 6. ¿Cúantos años tienes? How old are you?
- 7. ¿Cúando es tu cumpleaños? When is your birthday?
- 8. ¿Y tú?

And you?

ME llam <u>O</u>	l m	called
SE llamA	He or	she is called

Estoy I am

I HAVE + age Tengo

he/ she has Tiene

Es It is / is

Llamar-se	To call-oneself
Me llamo	I am called
te llamas	You are called
Se llama	He/She is called
Nos llamamos	We al called
Os llamaís	You all are called
Se llaman	They are called

tener	To have
ten go	I have
tien es	You have
tien e	He/She has
Ten emos	We have
Ten eis	You all have
Tien en	They have

Connectives:

but pero y también and also which (is) que (es)

¿Cúantos años tienes?

Tengo ... años. I'm ... (years old).

Tiene ... años. He/She is ... (years old).

¿Cuándo es TU cumpleaños? When is your birthday?

Mi cumpleaños es EL ... DE ... My birthday is THE ... OF ...

Mi my

tu vour

his/her/its/your(formal) Su

el primero (uno) de ... the first of ... ¡Feliz cumpleaños! Happy birthday!

GIVING AGES OF FAMILY MEMBERS

¿Cuántos años tiene tu padre? - How old is your father?

PLURAL

¿ Cuántos años tienen tus hermanas? - How old are your sisters?

Giving an answer!

Mi padre / madre tiene años - My father / mother is ... years old.

Mis hermanos / hermanas tienen ... yaños - My brothers /sisters .. &... years old.

Phonic focus:

h - silent - hasta

LI - y - IIamo

ñ – ny – Espa**ñ**a

ce – thay – lapices

v – bey – **v**einte

accents – syllable stress - sábado

KO. Yr7 mod 1 ¡BIENVENIDOS!) TOPIC VOCABULARY TRANSLATED

LOS SALUDOS [GREETINGS]

¡Fatal!

Hello!/ Hi! ¡Hola! ¡Adiós! Goodbye! See you later! ¡Hasta luego! Buenos días. Good morning. Good afternoon. Buenas tardes. Buenas noches. Goodnight. Fenomenal/estupendo Great. Bien. Fine. Regular. So-so. Mal. Bad.

	Los meses		The months
	enero		January
	febrero	LOS MESES	February
	marzo		March
	abril	DEL ANO	April
	mayo		May
	junio		June
	julio		July
	agosto		August
	septiemb	ore	September
	octubre		October
	noviemb	re	November
diciembre		e	December

Terrible!

<u> DCABULARY</u>	TRANSLATED
En mi mochilla	In my school bag
	NAPIA
un bolígrafo	a biro
una carpeta	a file
un cuaderno	an exercise book
un diccionario	a dictionary
un estuche	a pencil case
una goma	a rubber
un lápiz	a pencil
los lápi <u>ce</u> s	pencils
un libro	a textbook
una pluma	a fountain pen
una regla	a ruler
un sacapuntas	a pencil sharpener
A B	C CH D
ah bay	thay chay day
E F	G H I
ay effay	hay ahchay ee
J K	L LL M
hota ka	elay el-yay emay
N Ñ	O P Q
enay en-yay	y oh pay koo
R S	TUV
eray essay	tay oo oovay
w x	YZ
oovay ayk	is ee-grey-ga theytah

of the same

doblay

LOS NÚMEROS	NUMBERS
uno	1
dos	2
tres	3
cuatro	4
cinco	5
seis	6
siete	7
ocho	8
nueve	9
diez	10
once	11
doce	12
trece	13
catorce	14
quince	15
dieciséis	16
diecisiete	17
dieciocho	18
diecinueve	19
veinte	20
veintiuno	21
veintidós	22
veintitrés	23
veinticuatro	24
veinticinco	25
veintiséis	26
veintisiete	27
veintiocho	28
veintinueve	29
treinta	30
Treinta y uno	31

MFL Knowledge Organiser AUT 2 itu y yo!

grande / s

pequeño/a /os/as

big

small

yellow

tabby

blue

gold

grey

brown

black

green

tabby

great

fantastic

boring

fun(ny)

red

white

Son= they are Hay - there is

Es - is

Tiene - has

Me llamo – I'm called

Se llama – is called

Se llaman – are called

Tengo años – I'm years old

Tiene _____ años – He/she is ____ years old

Tienen años – He/she is years old

PRESENT	-tener – to	Ser – to be	Llevar – to
	have	Sei – to be	wear
1	Tengo	Soy	Llevo
you	Tienes	Eres	Llevas
he/she/it	Tiene	Es	Lleva
we	Tenemos	Somos	Llevamos
you (pl)	Tenéis	Sois	Lleváis
they	Tienen	Son	llevan

Opinions & Pronouns

me gusta (mucho) no me gusta (nada)

me encanta

me chifla

me interesa

detesto me irrita

odio

Connectives

también also

but pero

sin embargo however

que which

where donde

becauset porque

amarillo/a /os/as atigrado/a /os/as azul/ es blanco/a /os/as dorado/a /os/as gris /es marrón/es negro/a /os/as rojo/a /os/as verde / s atigrados/as genial

Phonic focus:

Un boligráfo blancO

fantástico/a /os/as

aburrido/a /os/as

divertido/a /os/as

Una reglas blancA

Unos libros blanOS

Unas gomas blancAS

Lápiz ____lápices j - conejo

z – theh - pez

Complexity

necesito – I need

me hace falta / me haceN falta - I'm missing

me gustaría tener – I would love to have

KO. Yr7 mod 2 tu y yo

¿tienes animales en casa?

Sí tengo	Yes, I have
un caballo	a horse
un cobayo	a guinea p
un conejo	a rabbit
un gato	a cat
un pájaro	a bird
un perro	a dog
un pez	a fish
un ratón	a mouse
una tortuga	a tortoise

dos gatos	two cats
dos pájaros	two bird
dos ratones	two mice

two fishes dos pe**c**es

It is ... (years old). Tiene ... años. I haven't got a pet No tengo un animal.

What colour is your

My pet is ... + colour

pet?

¿De qué color es tu animal?

Mi animal es ...+ colour

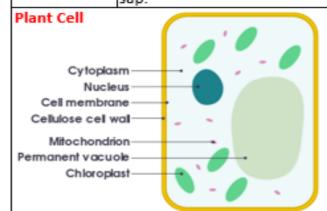
MI FAMILIA	MY FAMILY
IVII FAIVIILIA	IVIT FAIVIILI
Un herman o	a brother
Un hermanastr o	a step brother
Un a herman a	a sister
Un a hermanastr a	a step sister
Dos hermanos	2 brothers
Un padre	a dad
Un padrastr o	a step dad
Una madre	a mum
Un a madrastr a	a step mum
Mi s padre s	my parents
Un abuel o	a grandad
Un a abuel a	a grandmother
Un tí o	an uncle
Un a tí a	an aunt
Un prim o	a cousin (m)
Un a prim a	a cousin (f)
SOY hij o únic o	I AM only child(m)
SOY hijA únicA	I AM only child(f)

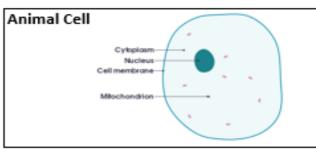
TOPIC VOCABULARY TRANSLATED

Lleva ...

7A Cells, Tissues, Organs and Systems

1. Life Processes		
	If something can do all 7 life	
	processes it is considered a	
Life	'living thing'	
Processes	They are; movement,	
riocesses	reproduction, sensitivity,	
	growth, respiration,	
	excretion and nutrition.	
Organism	A living thing.	
	Being able to move from	
Movement	place to place or move part	
	of themselves.	
Reproduction	Being able to make more	
	living things like themselves.	
Sensitivity	Being able to sense and react	
Schistivity	to things around them.	
Growth	Being able to increase in size.	
Respiration	Being able to release energy	
Respiration	through respiration.	
Excretion	Being able to get rid of waste	
excretion	materials.	
Nutrition	Taking in substances (such as	
	food) to help carry out the	
	other processes.	


	2. Organs
Organ	A part of animals or plants
	that does an important job-
	made up of different
	tissues.
Function	The job or role something
	has.
Brain	Controls the body.
Skin	The bodies biggest organ-
	used for protection and
	sensing things.
Lungs	Take in oxygen for
	respiration and excrete
	carbon dioxide.


Heart	Pumps blood around the body.	
Liver	Makes and destroys	
	substances.	
	Clean the blood and	
Kidneys	produce urine to excrete	
	waste.	
Bladder	Stores urine.	
Stomach	Breaks up food.	
6	Breaks up food and	
Small Intestin	absorbs it.	
	Removes water from	
Large Intestin	unwanted food.	
Rectum	Stores faeces (waste	
Rectum	material)	
Human Organ	s	
Brain	Mouth	
Threat	(Trachea)	
(cesphagus) Right Lung	Heart (behind the lung)	
Diaphragm		
	Stomach	
Liver	Large intestine	
Kidney Small intestine		
Skin	Bladder	
	Traps sunlight to make	
Leaf	food for a plant.	
	Carries substances around	
Stem	a plant.	
	Holds the plant in place	
Root	and takes in water and	
ROOL	other substances.	
	The process by which a	
Photosynthes	plant makes its own food.	
	piant makes its own food.	
•	3. Tissues	
	3. Tissues Groups of the same cells	

organs.

1	Made up of muscle tissue so
	it can move and pump the
	blood as well as fat tissue to
	protect it.
Root Hair	Small hairs on the outside of
Tissue	roots which help to take in as
	much water as possible.
	The tissue which carries
Xylem Tissue	water up through plants from
	the roots.

4. Cells		
	The basic units from which	
Cells	all tissues and living things	
	are made from.	
	When something has	
Specialised	features that allow it to do a	
	particular job.	
Cell Surface	Controls what enters and	
Membrane	leaves the cell.	
Nucleus	Controls the cell.	
	Jelly like substance where	
Cytoplasm	chemical reactions happen.	
	(mitochondrion- singular)	
Mitochondria	Where respiration happens.	
	Make food for the plant	
Chloroplasts	using photosynthesis-	
	contains chlorophyll.	
Cell Wall	Strengthens and supports	
	the cell- made of cellulose.	
Vasuala	Storage space filled with cell	
Vacuole	sap.	
Diant Call		

5. Organ Systems		
Organ	A collection of organs	
Systems	working together.	
Circulatory	Heart, blood vessels	
System	Carries oxygen and nutrients	
System	around the body.	
Digestive	Gullet, stomach, intestines	
System	Breaks down food and takes	
System	nutrients into the blood.	
Locomotor	Muscles, bones	
System	Enables the body to move.	
Urinary	Kidneys, bladder	
System	Gets rid of waste materials	
	produced in the body.	
Breathing	Lungs, trachea	
	Allows exchange of gases	
System	between blood and lungs.	
Nervous	Brain, nerves, spinal cord	
	Allows the body to sense	
System	things and react to them.	
Water	Roots, stem, leaves	
Transport	Transports water around the	
System	plant.	

Work through memorising the information - highlight each definition once you know it. When you have completed your highlighting completed the gap fill and activities on the second sheet to support your retrieval practice.

7C Muscles and Bones

1. Mu	iscles and Breathing
	The movement of muscles
Breathing	that allows us to take in and
	excrete gases.
	Process by which oxygen is
Respiration	used to release energy-
	produces carbon dioxide.
	One gas is exchanged for
Gas	another- oxygen goes into
Exchange	the blood, carbon dioxide
	leaves the blood.
Gas	The organs that help with
Exchange	breathing / gas exchange-
System	lungs, trachea, diaphragm
Name I - Cell	Can change shape- contract
Muscle Cell	(become short and fat) and
Adaptations	relax (back to original shape)
Inhale	Breathing in
Exhale	Breathing out
	The muscles in the
	diaphragm contract, moving
	it downwards. Muscles
Inhalation	between the ribs contract,
	pulling the ribs up and out.
	Lungs increase in size
	allowing air to flow in.
	The muscles in the
	diaphragm relax so it rises.
Exhalation	Muscles between the ribs
Extraraction	relax, moving the ribs down
	and in. Lungs decrease in
	size pushing air out.
Ventilation	The movement of air into
	and out of the lungs
Breathing	Number of times you inhale
Rate	and exhale in one minute.

2. Muscles and Blood	
PHISE	The feeling of the heart
	beating that can be felt.

Pulse Rate	The number of pulse beats
	you feel in a minute.
How the	Chambers fill with blood and
Heart Pumps	muscle tissue contracts
Blood	pumping the blood out.
Blood	A tube that carries blood
Vessels	around the body.
Arteries	Carry blood away from the
Arteries	heart to capillaries.
Capillaries	Tiny blood vessels
Capillaries	connecting arteries & veins.
Veins	Carry blood from capillaries
VEIIIS	towards heart.
Plasma	Main part of blood- the liquid
riasilia	part.
Red Blood	Carry oxygen in the blood-
Cells	haemoglobin in cells carries
Cells	the oxygen.
Red Blood	No nucleus (more room for
Cell	haemoglobin). Curved shape
Adaptations	increases surface area to
	take in oxygen quickly.
White Blood	Fight infections and keep us
Cells	healthy.
Bone	Where red and white blood
Marrow	cells are made.
	The Skaleton
;	3. The Skeleton

3. The Skeleton	
Bone Structure	Spongy bone material keeps bones light. Compact bone material is hard and strong. Bone marrow inside bone reduces mass of bone.
Skeleton	Formed by the bones in the body- allows for support, protection and movement.
Backbone	Made up of smaller vertebrae- the bodies main support.
Skull	Made up of 22 bones- protects the brain.
Tendons	Connects muscle to bones.
Ligaments	Connects bones together.

Cartilage	Slippery tissue on the ends of
Carthage	bones.
Flexible Joint	Two or more bones meeting
FICKIBIC JOING	that can be moved.
The Human Skeleton	MICH METERNA OGLAPI SONE PLANCES HAMPHE AB RABINE FRACES FRACES

4. M	4. Muscles and Moving	
Locomotor	The system that allows you	
	to move parts of the body-	
System	muscles and bones.	
Biomechanics	The study of how muscles	
Diomechanics	and bones work together.	
Movement	Muscles contract and pulls	
Wovement	on bone it is attached to.	
Antagonistic	Pairs of muscles that allow	
Pairs	bones to move in two	
Pairs	different directions.	
Biceps and Triceps		
When you lift your arm, the When you put your arm down, biceps muscle contracts. When you put your arm down, the biceps muscle is stretched.		
shoulder blade tendons		
biceps muscle upper arm bone		
muscle	tendons	
When you lift your arm, the When you put your arm down, triceps muscle is stretched.		
Impulses	Messages sent from brain	
impuises	that tell muscles to contract.	

Mitochondria Where respiration happens in cells producing energy.

5. Drugs	
Drug	Substances which changes
	the way the body works.
Medicine	Drugs used to help people
iviedicine	with illness/injury.
Side-Effects	Harmful / unpleasant effects
Side-Effects	of using drugs.
Addictive	Feeling of not being able to
Addictive	cope without the drug.
Recreational	Drugs taken for pleasure-
Drugs	caffeine nicotine and alcohol
Drugs	are legal recreational drugs.
Cannabis	Can cause memory loss and
Califiable	mental illness.
Ecstasy	Can cause mental illness,
Lustasy	kidney damage and death.
Cocaine	Addictive and blocks arteries.
Heroin	Addictive, collapses veins,
Herom	causes vomiting & headaches
Reaction	The time taken to respond to
Time	a stimulus.
	Decrease your reaction time-
Stimulants	impulse carried faster.
	e.g. caffeine
	Increase your reaction time-
Depressants	impulses carried slower.
	e.g. alcohol

Work through memorising the information — highlight each definition once you know it. When you have completed your highlighting completed the gap fill and activities on the second sheet to support your retrieval practice.

+

7G The Particle Model

1. Sol	ids, Liquids and Gases
States of	The three forms that a
Matter	substance can be in; solid,
Wiatter	liquid or gas.
	Do not flow
Solid	Fixed shape
Properties	Fixed volume
	Cannot be compressed
	Can Flow
Liquid	No fixed shape
Properties	Fixed volume
	Cannot be compressed
	Can flow
Gas	No fixed shape
Properties	No fixed volume
	Can be compressed
Flow	To move and change shape
11000	smoothly.
	The amount room something
Volume	takes up. Measured in cubic
	centimetres (cm³).
Compressed	Squashed into a smaller
Compressed	volume.
Pressure	The amount of force pushing
riessure	on a certain area.

	2. Particles	
	A theory used to explain the	
Particle	different properties and	
Theory	observations of solids, liquids	
	and gases.	
Particles	Tiny pieces of matter that	
	everything is made out of.	
Forces	Tiny forces of attraction hold	
	the particles together.	
	Fixed arrangement of	
Solid Particle	particles held closely	
Properties	together that cannot move	
	over each other but vibrate.	

Liquid	Held closely together but not
Particle	in a fixed arrangement and
Properties	can move over each other.
Gas Particle	Far apart from each other
Properties	and free to move about in all
	directions.
Solid Particle Diagram	
Liquid Particle Diagram	
Gas Particle Diagram	
Vibrate	To move backwards and forwards.

3.	Brownian Motion
Brownian Motion	An erratic movement of small specks of matter caused by being hit by the moving particles that make up liquids or gases.
Trace	Used to plot the movement of a particle and used as evidence for Brownian motion.
Molecule	Two or more atoms joined together in a group.

	A unit of measurement.
Nanometre	1 nanometre (nm) is 0.000
	000 001 metres (m)

	4. Diffusion	
	The movement of particles	
Diffusion	spreading out and mixing	
Diriusion	with each other without	
	anything moving them.	
	Occurs quickly in gases	
	because they are able to	
	move freely in all directions.	
Particle	Diffusion is slower in liquids	
	because the particles are still	
Theory and Diffusion	moving but not as freely as in	
Diffusion	a gas.	
	Diffusion cannot occur in	
	solids because the particles	
	are in a fixed positon.	
	Diffusion of particles of	
Small	essential substances in our	
Intestine	food pass through the wall of	
	the small intestine.	

	5. Air Pressure
Air Pressure	The force on a certain area caused by air molecules hitting it.
High Air Pressure	Makes sure tyres are inflated. Can also affect the weather making it dry and settled.
Vacuum	A completely empty space containing no particles (not even air).
Straws	Straws work because when you suck, you reduce the pressure inside the straw so the air pressure outside the straw is grater and the liquid is pushed up.

7H Atoms, Elements and Molecules

Tiny pieces of matter that make up everything. Atoms The simplest particles of matter that make up everything. A substance made up of one type of atom. Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and nothing else.	1	The Air We Breathe
Atoms The simplest particles of matter that make up everything. A substance made up of one type of atom. Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	1.	
The simplest particles of matter that make up everything. A substance made up of one type of atom. Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Particles	
Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the together. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		
Two or more different atoms joined together in a group. Two or more substances jumbled together but not chemically joined together. Periodic Table known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Atoms	
Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Atoms	
Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		
Two or more atoms joined together in a group. Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Flements	of one type of atom.
Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Licincii	9999
Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		••••
Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		Two or more atoms joined
Two or more different atoms joined together. Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		together in a group.
Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Molecules	
Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		•••
Two or more substances jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		•••
Two or more substances jumbled together but not chemically joined together. Periodic Table A table that lists all of the known elements. A mixture of different gases- nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		Two or more different atoms
Two or more substances jumbled together but not chemically joined together. Periodic Table A table that lists all of the known elements. A mixture of different gases- nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		joined together.
jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Compound	••
jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		••
jumbled together but not chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gasesnitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		••
Chemically joined together. Periodic A table that lists all of the known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		
Periodic A table that lists all of the Known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		
Periodic A table that lists all of the Known elements. A mixture of different gases-nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Mixture	
Table known elements. A mixture of different gases- nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		together.
Table known elements. A mixture of different gases- nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		•
Table known elements. A mixture of different gases- nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		•
A mixture of different gases- Air nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and		
Air nitrogen, oxygen, argon, carbon dioxide A substance made up of a single element/compound and	Table	
dioxide A substance made up of a Pure single element/compound and		l
A substance made up of a Pure single element/compound and	Air	
Pure single element/compound and		
		·
nothing else.	Pure	single element/compound and
		nothing else.

2. Earth's Elements		
Chemical	The 1 or 2 letters given to each	
Symbols	element	

Earth's Crust	Made up of oxygen, iron,
	silicon, aluminium, calcium and
	other elements.
Naturally	Usually found as compounds,
1	some found pure. Can be
Occurring	extracted from compounds by
Elements	simple chemical reactions.
Properties	What an element is like, its
	appearance and how it
	behaves.
	Using a material again to save
Recycling	resources and make sure we
	don't run out.
Carbon	Can be found as diamond and
	graphite. The different
	properties of each form are
	due to the ways the atoms are
	joined together.

J		
3. Me	etals and Non-Metals	
Common Metal Properties	Solid, high melting point, strong, flexible, malleable, shiny and good conductors of heat and electricity.	
Metals	Three-quarters of all elements are metals- found on the left side of the periodic table.	
Common Non-Metal Properties	Low melting points, brittle, not shiny and poor conductors of heat and electricity.	
Malleable	Able to be beaten and bent into shape.	
Flexible	Able to bend without breaking.	
Conductor	A substance that allows something to pass through it (e.g. heat, electricity).	
Brittle	Not easily bent- breaks under pressure.	
Magnetic	Iron, nickel and cobalt are the only magnetic elements.	

Mercury	The only metal that is liquid
	at room temperature.
4.1	Making Compounds
	The most common
Silicon	compound in the Earth's
Dioxide	crust- found in sand, quartz
Dioxide	and granite.
	The first stage often involves
	heating a mixture of
Forming	elements. Energy is often
Compounds	given out when elements
	react to form compounds.
	Compound formed by
Iron Sulfide	heating a mixture of iron and
iron sumae	sulfur.
	Formed between atoms
Bonds	
Donas	when compounds are formed.
	Iron can be separated from
Iron Sulfide	I .
Properties	sulfur using a magnet but iron
	sulfide is not magnetic.
Metal Ores	A rock containing a
	compound of a metal. If one of the elements in the
	compound is a metal its name
Naming	goes first. the non-metal at
Compounds	the end of the compound's
	name has its name changed
	so it sends in -ide.

5. Chemical Reactions	
Chemical	A change in which one or
Reaction	more new substance is
Reaction	formed.
Word Equation	Used to model chemical
word Equation	reactions.
	The starting substances-
Reactants	written on left of word
	equation.
	The new substances made-
Products	written on right of word
	equation.

	Using heat to break down a
Thermal	compound- used to extract
Decomposition	metals from their
	compounds.
Thermal Decom	position of Mercury Oxide
Mercury oxide -	→ mercury + oxygen
Carbonates	Compounds containing a
Carbonates	metal, carbon and oxygen.
Calcium	Found in limestone, chalk
Carbonate	and marble.
Thermal Decomposition of Calcium	
Carbonate	
Copper carbonate → copper oxide + carbon	
dioxide	
Test for	Carbon dioxide turns
Carbon	limewater cloudy.
Dioxide	
	A compound that contains
	two elements plus oxygen
-ate	will end in -ate.
	(e.g. zinc sulfate contains
	zinc, sulfur and oxygen)

Work through memorising the information — highlight each definition once you know it. When you have completed your highlighting completed the gap fill and activities on the second sheet to support your retrieval practice.

7I Energy

	1. Energy from Food
	Needed to live, helps us to grow
Enormy	and repair our bodies, move and
Energy	keep warm. Food is a source of
	energy.
Joule	A unit for measuring energy.
Kilojoule	1000J = 1kJ
Diet	The food that a person eats.
	The amount of force with which
Weight	gravity pulls things- measured in
	Newtons (N).
Balanced	Eating a variety of foods to
	provide all the things that the
Diet	body needs.
Nutrients	Substances needed from food.

2. Energ	y Stores and Transfers
Transferred	When energy is moved from
	one store into another.
Forces	A push, pull or twist and a
roices	type of energy transfer.
Electricity	A way of transferring energy
Licetificity	through wires.
	When energy is captured
Stored	within an object and can be
Stored	moved to another store by
	energy transfers.
Chemical	Energy stored in chemicals
	(such as food, fuel and
Energy	batteries).
Kinetic	Energy stored in moving
Energy	things.
Thermal	Engravetored in bot objects
Energy	Energy stored in hot objects.
Strain	Energy stored in stretched or
	squashed objects. Also called
Energy	elastic potential energy.
Gravitational	Energy stored in objects in
Potential	high places that can fall
Energy	down.

Nuclear	Energy stored inside
1	materials (also called atomic
Energy	energy).
Conservation	The idea that energy can
	never be created or
	destroyed, only transferred
of Energy	from one store to another.

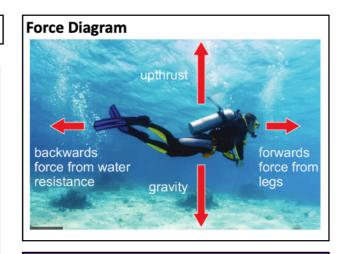
3. Fuels

store of chemical or nuclear energy that can easily be transferred.
transferred.
Used in nuclear power
stations to generate
electricity.
A radioactive metal that can
be used as a nuclear fuel.
To produce electricity.
A fuel formed from the dead
remains of organisms over
millions of years.
A fossil fuel made from the
remains of plants.
A fossil fuel made from the
remains of microscopic dead
plants and animals that lived
in the sea.
A fossil fuel made from the
remains of microscopic dead
plants and animals that lived
in the sea.
An energy resource that will
run out because we cannot
renew our supplies of it.
An energy resource that will
never run out (such as solar
power)
A fuel made from plants or
animal droppings.
Can be used as a fuel by
combining with oxygen from

4. Othe	r Energy Resources
Solar Power	Generating electricity using
Solai Powei	energy from the Sun.
	Flat plats that use energy
Solar Panel	from the Sun to heat
	water.
	Flat panels that use energy
Solar Cell	transferred by light from
Solar Cell	the Sun to produce
	electricity.
	A large power station using
Solar Power	the Sun to heat water to
Station	make steam which then
	generates electricity.
	Generates electricity using
Wind Turbine	energy transferred from
	the wind.
Hydroelectric	Electricity generated by
Power	moving water turning
Power	turbines and generators.
Geothermal	Electricity generated using
1	heat from rocks
Power	underground.
Photosynthesis	Carbon dioxide + water →
Photosynthesis	glucose + oxygen

5. l	5. Using Resources	
Fossil Fuel Advantages	Cheap compared to the	
	others and convenient to	
Auvantages	use in cars/vehicles.	
Fossil Fuel	Non-renewable	
	Releases polluting gases	
Disadvantages	when burnt.	
Nuclear	No polluting gases	
Advantages	generated.	
Nuclear	Non-renewable	
Disadvantages	Very expensive	
Disauvantages	Dangerous waste materials	
Renewable	No polluting gases	
Advantages	Renewable	

Renewable	Most not available all the
Disadvantages	time and only available in
	specific locations.
	Fossil fuels are making the
Climate	earth warmer due to the
Change	carbon dioxide given off
	when they are burnt.
	How much of the energy
Efficiency	transferred by a machine is
	useful.
Using Less Fossil Fuels	Using efficient appliances,
	insulating homes, public
	transport/walking/cycling


Work through memorising the information — highlight each definition once you know it. When you have completed your highlighting completed the gap fill and activities on the second sheet to support your retrieval practice.

~~ -

7K Forces

1. Different Forces	
Force	A push or a pull.
	The thing providing the force
Contact	needs to touch an object to
	affect it.
Forces	Friction, air resistance, water
	resistance, upthrust
Harthan at	The force that makes things
Upthrust	float.
Air	A force acting on objects
Resistance	moving through the air.
Water	A force acting on objects
Resistance	moving through water.
	Forces that can affect an
Non-Contact	object from a distance.
Forces	Gravity, static electricity,
	magnetism
Gravity	A force that pulls objects
Gravity	downwards.
Static	A force that attracts things.
Electricity	A force that attracts things.
	A force that attracts objects
Magnetism	made of iron, nickel or
	cobalt.
Newton (N)	The units for measuring
	forces.
	The force of gravity pulling
Weight	on something- measured in
	Newtons (N)
	The amount of matter that
Mass	makes up something-
	measured in kilograms (kg)
_	We draw arrows on force
	diagrams to show the
Forces	direction of a force; a bigger
	arrow shows a bigger force.

	2. Springs	
Stretched	Made longer	
Compressed	Made shorter	
Spring	Made from coils of wire,	
	The difference between	
Extension	the original length and the	
	stretched length.	
	An object that returns to	
Elastic	its original length when the	
	force is removed.	
	Hang a spring from a clamp	
Investigating	and measure its length.	
Extension	Add increasing numbers of	
LACEIISIOII	masses and measure the	
	extension each time.	
Hooke's Law	Extension is proportional	
HOUKE 5 Law	to the force applied.	
	A relationship between	
Proportional	two variables where if one	
Proportional	doubles, the other will	
	double.	
Limit of	The point at which the	
Proportionality	extension and force are no	
Proportionality	longer proportional.	
	The point at which the	
Elastic Limit	spring cannot return to its	
	original length.	
Force Meter	Springs are used inside to	
rorce wieter	measure the force.	

How Extension Depends on Force	elastic limit limit of proportionality
	Force (N)

	3. Friction	
Friction	Force between two touching objects.	
Increasing Friction	Using certain materials like rubber (used on racing cars to stop them from sliding off the road).	
Reducing Friction	Make surfaces smooth or by using lubricants such as oil or grease.	
Lubrication	Adding a lubricant	
Friction Damage	Friction can wear things away like brake pads on a bike. Friction between parts of a car can cause it to overheat and stop working.	

	4. Pressure	
Pressure	The amount of force pushing	
riessure	on a certain area.	
The Size of	Depends upon the size of the	
Pressure	force and the size of the area	
riessure	it is pushing on.	
	Snowshoes spread out	
Pressure in	weight, reduce pressure and	
Sport	stop people sinking into soft	
	snow.	
	It is easier to cut something	
Pressure in	with a sharp knife because it	
Everyday	has a smaller edge so the	
Life	force is concentrated over a	
	smaller area.	
Pressure	proggue – force	
formula	$pressure = {area}$	

Pascal (Pa)
The units for measuring pressure.

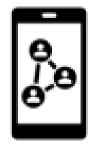
1Pa = 1N/m³

5. Balanced	and Unbalanced Forces
	Two forces of the same size
	acting upon an object in
Balanced	opposite directions.
Forces	Balanced forces will not
	change the speed of a
	moving object.
	When one of the forces
	acting upon an object is
Unbalanced	larger than the other. If
Forces	acting on a moving object
	unbalanced forces will
	change its speed.
	Not moving- stationary
Stationary	objects have balanced
	forces acting on them.
Force Diagram	

Work through memorising the information – highlight each definition once you know it. When you have completed your highlighting completed the gap fill and activities on the second sheet to support your retrieval practice.

Using medic

Formatting can be using tools like **bold**, *italic*, underline, changing colour, font style and size, alignment and many more.


Formatting can be used for many reasons. Including to make text easier to read, easier for the audience to use, highlight important information or attract attention.

It is important to select the appropriate formatting for the audience!

Images play an important role when using software. It is important that **appropriate** images are used, ones that meet the requirements of the audience and the purpose of whatever is being created.

A **blog** is a regularly updated website or web page, typically one run by an individual or small group, that is written in an informal or conversational style.

Is it real? Is it true?

When researching and reading stories online you need to check that they are reliable, trustworthy and credible. Anyone can upload content so it is not always accurate.

- Check the source, find out which other sources are reporting it
- Check whether other sites are saying the same thing,
- Don't trust all the stories and all pictures
- Check for facts not rumours
- Check any citations or references

When you are researching a topic you will come across a lot of useful information. Once the reliability and accuracy has been checked you may decide to use the information. Check the law

Plagiarism using someone else's work or ideas and using them as if they were your own. This can be any type of work either printed or electronic.

Citation the audience where the information came from. Anything that is used needs to have **citations** or **references** to the original work, the audience details about the source so that they can see that the source is relevant and recognised so they can find the source themselves if they want to.

It is the law

Copyright Law gives the creators of literary, dramatic, musical, artistic works, sound recordings, broadcasts, films and typographical arrangement of published editions, rights to control the ways in which their material may be used. **(C)**opyright

Creative Commons(CC) license is one type of copyright license. This allows the copyright owner to say exactly what other people can and can't do with or to their work.

They help copyright owners share their work while keeping the copyright. For example, a Creative Commons licence might allow other people to copy and distribute the copyright owner's work, if they give them credit.

Keywords Format Licensing Source Audience Copyright Plagiarism

Blog Citation

> Referencing Appropriate

Credibility

Mear 7 Modernic data

Spreadsheets are used to model data.

That means that they can be used to perform calculations on data and make predicts.

Data and information are not the same.

- · Data: facts and figures in their raw form
- · Information: data that has been given structure or meaning

For example:

Data-10, 2107, 18

Information—Time 10am, date 21st July, temperature 18°

The tool bar ribbon at the top allows for **formatting** of the data. Changing colour, size, style etc

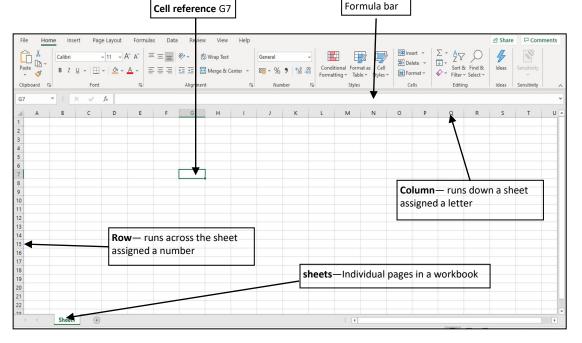
There is a **sort** and **filter** tool that allows for data to be arranged in ways that is most useful for the user e.g. alphabetical, highest, lowest etc.

Conditional formatting can be set to allow the cell **formatting** to **automatically** change if certain criteria is met. For example a cell might turn red if there was a negative number

In order to complete calculations spreadsheets make use of formula.

A formula uses the following basic symbols

The = symbol is always at the start of a formula


The + symbol is used for addition

The - symbol is used for subtraction

The * symbol is used for multiply

The / symbol is used for divide

Functions are also used which are predefined formula.

Common **functions** are

SUM—adds a range of cells

MAX—returns the largest value from selected cells

MIN—returns the smallest value from selected cells

AVERAGE—provides the arithmetic mean (average) of selected cells

COUNTIF—counts the number of cells in a range that meet the given criteria

IF— allows logical comparisons

COUNTA—counts cells that are not empty

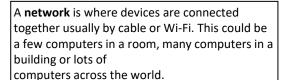
Data can be gathered from different sources

- · Primary source: collecting data yourself
- **Secondary** source: someone else collects the data

Each box on a spreadsheet is called a **cell** and they hold data.

Each **cell** has a unique **cell reference** to identify its location.

You can fill data automatically by using AutoFill



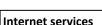
Year 7 Networks

Key Words		
Bandwidth	Amount of data that can be moved from one point to another in a given time.	
Buffering	Data arriving slower that it is being processed	
Internet	A worldwide network of computers	
internet of Things (IoT)	Takes everyday 'things' and connects them to the Internet e.g. smart light bulb, fridge, heating etc.	
IP address	A unique address for every device on the internet	
Packet	Networks send/receive messages in units called packets	
Protocol	All methods of communication need rules in place in order to pass on the message successfully. These sets of rules are called 'protocols'	
Search Engine	A website that allows user to look up information on WWW e.g. Bing, Google etc.	
Web browser	Piece of software(code) used to view information on the Internet	
www	Part of the Internet that contains websites and webpages. NOT the same as the Internet.	

Wired and Wireless data transmission

A computer network can be either wired or wireless.

- · Wired networks send data along cables.
- · Wireless networks send data through the air using radio waves.



Bandwidth—Bandwidth is the amount of data that can be moved from one point to another in a given time. Higher bandwidth = more data per second

Bandwidth is measured in bits per second
A bit is the smallest unit of data
Data transfer rates are now so good that
bandwidth is usually measured in Megabits
per second (Mbps)
1Mb—1 million bits

There are a range of services provided by the internet. These include:

- · World Wide Web
- · Email
- · Online gaming
- Instant messaging
- · Voice over IP (VoIP) audio calls
- · Internet of Things (IoT)
- Media streaming (e.g. watching Netflix online)
 The rules for each service are different.
 As a result, a different protocol is used.

HTTP—HyperText Transfer Protocol—used so that data can be understood when sent between web browsers and servers.
HTTPS—is the secure version of HTTP where data sent is encrypted.

Network Hardware—physical equipment required to set up a network Hub—Connects a number of computers together. Ports allow cables to be plugged in from each connected computer. Router—Used to connect two separate networks together across the internet Sever—A powerful computer which provides services to a network Cable—Used to connect different devices together. They are often made up of purity of wires.

PROGRAMMING 1 - SCRATCH

Scratch is a **block based programming language**. We can use predefined code drag and drop blocks to create a sequence of code.

Key Words	
Abstraction	Identify the important aspects to start with
Algorithm	Precise sequence of instructions
Computational thinking	Solving problems with or without a computer
Debugging	Looking at where a program might have errors or can be improved
Blocks	Scratch bricks that we can use to code algorithms
Decomposition	Breaking down a problem into smaller parts
Execute	A computer precisely runs through the instructions
Iteration	Doing the same thing more than once
Selection	Making choices
Sequence	Running instructions in order
Variable	Data being stored by the computer

SCRATCH

A computer inputs (this might be automatic or via human input), processes that input and then produces an output. as well as producing an output. For example when you use a keyboard and mouse, the mouse is used to input data into the computer to be processed and the output is visible on the computer monitor.

Sequence, selection and iteration are all processes. In order for computers to perform tasks there is more that is needed. For example a computer will take an input (this might be automatic or via human input) which the computer will then process and the output will be visible on the computer monitor.

A **selection** statement in programming allows a computer to **evaluate** an **expression** to **'true'** or **'false'** and then perform an action depending on the outcome.

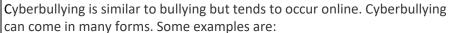
Operators

Comparison operators allow us to compare using <>+ Logical operators use AND, OR, NOT

Variables are used to store data for use in a program. They can store lots of different types of data such as names and scores. So set variable score to equal 0

If I score a goal then increase variable by 1

Count controlled iteration will execute the commands a set number of times. Example: "perform 200 star jumps"

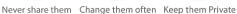

Condition-controlled iteration will execute the commands until the condition you set is no longer being met. Example: "perform star jumps until 3pm"

We use algorithms in every day life. Example an algorithm to get to school, to make a cup of tea, to make a pizza, to order a takeaway. These are just precise sequences of instructions.

DIGITAL SKILLS

- · Threatening someone to make them feel scared
- Harassing someone by repeatedly sending them messages
- Ruining somebody's reputation
- Excluding someone from a group
- Stealing someone's identity and pretending to be them
- Publicly displaying private images or messages

Key Words		
Audience	The people you are communicating, presenting information to	
Catfishing	A person pretends to be someone they are not.	
Collaboration	Working effectively together	
Digital tattoo/Digital footprint	Online reputation that is permanent	
Email	A tool for online communication	
Hazards	Areas/items that could cause damage or injury	
Network	Devices are connected together usually by cable or Wi-Fi.	
Password	A way to ensure no one access your data or information	
Respect	Be mindful of how you are responding to others	
Secure	Making sure your online information is safe	



STOP cyberbullying

PASSWORDS are like underpants

Social media settings

- Profiles should always be set to private
- Profile images should not reveal locations
- Profile images should not be easy to recognise; it is much better to use a picture of a pet or a cartoon character
- · Don't reveal locations this makes it easy to find out where you are.
- · Making your date of birth public makes it easy for hackers to steal your personal information and set up fake accounts in your name.
- · You should never reveal your phone number, email address, or home address on a public site
- · You should never reveal your current location on social media
- Putting your full name, including a middle name, makes it easy for someone to steal your personal information. Always use a nickname or shortened version of your name

Do you really want to send that?

Think before you click.

It is easy to send comments from the other side of a screen.

It is not easy to then remove them. Actions need to be considered before mistakes are made.

Using technology appropriately, carefully and positively leads to positive digital citizens.

Digital citizenship to the responsible use of technology by anyone who uses computers, the Internet and digital devices to engage with society on any level.

Secure **passwords**

No one should be able to guess/work out your password.

Current government advice is to use 3 random words

Where to get help

Talk to a trusted adult

https://www.ceop.police.uk/

https://www.childline.org.uk/

Design Specification – Key Questions

Α	Aesthetics	hetics What shape should the product be?			
		What colour should be product be?			
		What texture should the surface have?			
С	Cost	What should the cost of the product be?			
С	Consumer	Who is the client or the user of the product?			
		What features of other similar products should it			
		have?			
		Does the client have any specific needs or wants			
		for the product?			
Ε					
		How should the product be packaged?			
		How will the product be disposed of when it is no			
		longer needed?			
S	Safety	What safety risks have to be considered?			
		What safety standards must the product meet?			
S	Size	How long, wide and tall should the product be?			
		How much should the product weigh?			
F	Function	What will the product be used for?			
		How will it work?			
		How should it be tested?			
M	Materials and	What materials should the product be made from?			
	Manufacturing	Are there any limits on the sizes of the available			
		materials?			
		How many products need to be made?			

Key Words and Definitions

ncy trotas and Deminions		
Refuse	Is the product necessary?	
Rethink	Are there alternative materials or design	
	options that are more sustainable?	
Reduce	Can the product be made from fewer	
	materials?	
	Can the amount of unsustainable materials	
	be reduced?	
Reuse	Can parts of the product be reused in a	
	different product?	
Recycle	Can the materials used be recycled?	
	If the product made from recycled	
	materials?	
Repair	Can the product be repaired rather than	
	being thrown away if it breaks?	

Sustainability	The level to which resources can	
	be used without them becoming	
	unavailable in the future.	
Carbon	Carbon foot print is the	
Footprint	measurement/amount of	
	greenhouse gases produced in	
	the production of products.	
Renewable	A source that is quickly replaced	
Energy Source	by natural means and will not run	
	out.	
Non Renewable	A source that cannot quickly be	
Energy Source	replaced and will eventa: Ily run	

out.

Design Process

Primary Research	Data gathered first hand directly from the client	
Secondary Research	Data about the client that comes from a second hand source	
Product Analysis	Looking at a product in detail to understand more about it	
	using ACCESS FM	
Design Brief	A summary of the design opportunity	
Design Specification	A document that lists all the design criteria that the finished	
	product must meet.	
Design	Involves making a model of a design, which is then tested and	
Development	evaluated. A new, improved prototype is made and the process	
	is repeated until the finished design meets all the needs and	
	wants of the client.	
Testing	To check that the product meets the design specification and	
	the needs of the user.	
Evaluation	Where a designer reflects on the design of a product, looks at	
	what went well during testing and identifies ways that a	
	product could be improved.	

Renewable Energy Sources

A renewable energy source is quickly replaced by natural means and will not run out. Examples include wind power, solar power and hydroelectric power

Disadvantages
Initial cost of installation is high
Some types of renewable energy are noisy
Some types of renewable energy look ugly
Some types of renewable energy need
constant sunlight or wind
Unused electricity could be wasted
Local habitat could be displaced

How can we reduce our impact on the environment?

- Use renewable materials rather than non-renewable means these can be replenished.
- If non-renewable materials are used such as plastic (oil) carbon emissions are given off resulting in global warming.
- Choosing biodegradable materials means they will break down naturally when the product comes to the end of its life. Non-biodegradable materials that have not been recycled will end up in the landfill or the sea damaging animals and habitats.
- Apply the **6Rs** to ensure minimal impact on the planet.

3

Tools and Equipment

	Name	lame • Use	
		Safety point	
		To cut paper, card and boards	
	Craft Knife	Safety Rules when using it	
	Crart Killic	Lock must be on	
		Point downwards	
		Use a cutting mat and safety ruler	
######################################		Placed under the material	
	Cutting Mat	Safety	
Cutting	Catting Wat	It stops the knife from slipping	
		Used when cutting the material with	
	Metal Safety Ruler	a craft knife.	
18 18 18 18 18 18		Safety	
R. P. Links	Nulei	Fingers stay in the indent so	
*		protected from the blade	
		Used to join card and boards	
	Glue Gun	together	
	Glac Gall	Safety	
		The glue and nozzle is hot	
		Be careful not to use too much glue	

Follow all verbal and written safety instructions, safety signs and floor markings.

Wear an apron and remove any loose clothing or jewellery. Tie back long hair.

Always walk – never run

Do not crowd other people

Reports any accidents that occur immediately to the teacher.

Do not leave anything on the floor

Leave the workspace clean and tidy when you have finished.

Sources of Timber

Timber is made from trees that are chopped down and then cut into planks in a sawmill.

Timber can be a renewable resource if grown in well-managed forests. Responsible management includes planting trees as older trees are cut down. Timber grown this way can be identified by the Forest Stewardship Council FSC,

Types of Timber

- Hardwood comes from deciduous trees, which are trees that shed their leaves each autumn. Hardwood trees can take 100 years to grow to a size where they can be harvested for timber.
- Softwood comes from coniferous trees. These are trees that keep their leaves or needles all year round, so they typically grow faster than hardwood trees. Softwood trees can reach a size where they can be harvested for timber in 25-30 years so more ecofriendly and cheaper.
- Manufactured Boards are made by gluing particles or pieces of wood together. These can be the waste materials from cutting of hardwood softwood or can be recycled woo.

Hardwoods

Туре	Properties	Uses	
Oak	Very strong and hard	High quality furniture	
	Light brown colour		
Mahogany	Fairly strong and durable	High quality furniture	
	Pink to reddish brown colour		
Beech	Hard and tough, but easy to work with	Wooden toys, household items	
	Light brown with darker brown flecks	and furniture	
Ash	Ash Tough and flexible Tool handles, sports equipm		
	Light creamy brown colour		
Balsa	Soft – can be marked using finger	Modelling	
	Off white to tan colour		

Softwoods

Туре	Properties	Uses
Pine	Fairly strong, easy to work with	Interior structures in buildings
	Light brown or yellowish colour	and furniture
Spruce	Strong and hard, but low resistance to	Wooden aircraft frames
	decay.	
	Yellowish-white colour	

Manufactured Boards

a.a.a.a.a.a.a			
Туре	Properties	Uses	
Medium	Made from fine particles of timber,	Low cost furniture	
Density	mixed with glue and compressed		
Fibreboard	together.		
	Smooth, even surface, easily machined		
Chipboard	Made from course chips of timber,	Kitchen worktops (covered with	
	mixed with glue and compressed	melamine formaldehyde)	
	together.		
	Rough surface with uneven texture		
Plywood	Made from layers of veneer glued	Furniture making	
	together with the layers grain	Marine plywood is used for	
	structures at right angles to each other	building boats	
	Layers are cut from timber then glued	4	
	together	TO	

Hygiene and Safety

Personal hygiene-people are sources of contamination. Personal hygiene must be followed to prevent food poisoning such as:-Wash hands before and after handling foods; tie or cover hair; remove jewellery;

Cross Contamination-The transfer of bacteria into food: Food to food, Food handler to food, Equipment to food

High Risk foods are foods high in protein and moisture e.g. meat, dairy, cooked rice, gravy. Must be stored at a temperature below 5°C to prevent bacteria growth.

Preparing food safely:

Cleaning

Keep yourself and hands clean
Use clean equipment
Use clean dish clothes and tea towels

Cooking

Cook raw foods until the core is 75C, check with a temperature probe.

Reheat foods to 75C

Never reheat food more than once

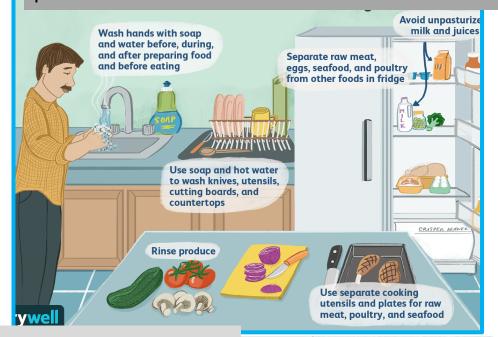
Chilling

Cool cooked foods for no longer than 90mins before refrigerating

High risk foods must be stored below 5C

Cross Contamination

Stroe raw foods away from cooked foods
Use separate equipment (chopping boards and utensils
Wash hands after handling raw meat and before preparing food



Code those rules in the picture CC for ways to prevent cross contamination

Preventing cross contamination

Knife Skills

Julienne 3mm*3mm*3~5cm

Medium Dice

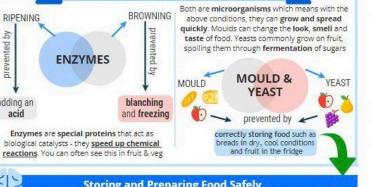
1,25*1,25*1,25cm

Small Dice

6*6*6mm

Weights and Measurements			
L	Litres		
g	Grams		
ml	millilitres	1000ml =1 litre	
Kg	kilograms	1000g	
Tbsp	tablespoons	15ml	
Tsp	teaspoon	5ml	
1pt	1 pint	568ml	

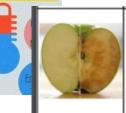
Variable estimation



Bridge hold

Food Spoilage

CAN CAUSE FOOD SPOILAGE:


Storing and Preparing Food Safely

Prevent Cross-Contamination

BEST BEFORE

- Clean utensils and surfaces Clean hands thoroughly Watch out for pests Keep high risk food away from other food
- Follow safety & hygiene rules

key cemperacures

OC to 5C

7. Enzymic browning: the process where fruit and vegetables turn brown due to them being exposed to oxygen (oxidisation).

produce CO2.

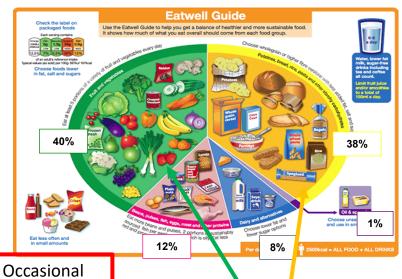
14. Rubbing in method is a method whereby you rub using your fingers together usually butter and flour to create a breadcrumb like mixture, usually the base for scones.

Alkali

Alkali+Acid

Chemical raising agents

Alkali+ Acid+ liquid+ CO2


scone rise, light and soft

Makes baked products like

Acid

treats: Foods high in fat and sugar

Eat plenty of these because:

*Adds bulk so gives a feeling of fullness. *Slow releasing energy.

Great source of fibre Packed full of vitamins, minerals and fibre.

Nutrient	How	Why
Cutting Fat	*Eat more chicken and fish and less red meat *Use skimmed or semi-skimmed milk instead of full fat milk *Grill food instead of frying *Cut fat off meat before cooking	*Overweight *Obesity *Increase in Cholesterol in the blood *Heart attack. *Type 2 diabetes
Cutting down on Sugar	*Avoid fizzy drinks and high calorie drinks. Have fruit juice or water instead. *Eat fewer cakes, biscuits and sweets *Eat more fruit as an alternative *Try the natural sweetness of fresh fruit in puddings instead of sugar	*Overweight *Obesity * *Heart attack. *Type 2 diabetes
Have more Fibre	 Eat lots of fresh fruit and vegetables Eat more wholemeal flour, bread, pasta, rice Use more canned beans, peas and lentils - eat more Try jacket potatoes with a variety of fillings 	*Helps to protect against diseases of the bowel. *Gives you a feeling of fullness and so can help in diets.
Eat less salt	•Use herbs and spices as an alternative to salt	* Too much salt can lead to high blood pressure. This will increase the risk of suffering heart problems and strokes

Food miles and the environment

Task: When you next visit your supermarket check the food labels to see where the fruits and vegetables in your basket comes from.

Key Term	Meaning	Chocolate –
Food Miles	the distance food has travelled to get to your plate. Food must travel from the farm it is grown on or the factory it is made in to a supermarket or shop to be sold	ingredients coming from all over the world has a lot of food miles.
Carbon Emission	harmful gases such as carbon dioxide are released into the earth's atmosphere when we use fossil fuels (coal and oil) to provide energy. We need energy to grow, produce and transport food. Some food uses more energy than others.	Agricultural Sector Primary processing Secondary processing Retail sector Distribution sector
Local	a place close to where you live. Fruit and vegetables that were grown near you would be considered local.	Strawberries grown in Manchester/UK