

KNOWLEDGE ORGANISER

NAME & FORM

HEAR TERM

English Knowledge Organiser

YEAR 9 - Sherlock Language Paper 1

Spring 1

Sherlock Holmes - The Speckled Band

Where this is a gan.	fill it with a qu	ote or an idea a	bout the investigation:
vviicie tilis is a gab.	TITL IL WILLI G GG	ote or all laca a	bout the investigation.

Suspects and Motives:

Dr Roylott:

Very angry and aggressive:

Has previously harmed people:

"a certain annual

sum should be allowed to each us in the event of marriage"

The Gypsies:

"He would give these vagabonds leave to encamp upon the few acres of bramble-covered land"

Other Suspects:

The client – Miss Helen Stoner:

Young but aged:

Frightened:

: "has done me the honour to ask my hand in marriage"

Information about the case:

- Helen's sister died _____ weeks before her own wedding, and Helen is about to wed.
- Helen's sister heard
- When she was killed she shouted

• It was an unusual death because

Question 1: List 4 Things

Marks: Timing:

Approach: Read very carefully through the lines given. Write in short, complete sentences such as "He lived alone." or "He didn't own a car."

Key Skill(s): Information retrieval

Question 2: Language

Marks: Timing

Amount: Aim to produce two-three paragraphs analysing different quotations in detail.

Approach: Identify the lines of the extract the question asks you to write about and draw a box around those lines. Read through the lines and highlight anything which could help you answer the question. Add annotations to identify effects and techniques within the quotations. Complete 2-3xQTA paragraphs in your response.

Key Skill(s): Q_____T___A_____A **Remember to...** clearly explain your points using causal connectives like "because", "as" or "meaning that" and zoom in on key words to analyse language on a deeper level. Use the sentences starters given on your Language Paper 2, Q3 KO!

Question 3: Structure

Marks: Timing:

Amount: Aim to produce two-three paragraphs analysing how the writer has structured the text at different points.

Approach: Read through the source and make a note of what each paragraph (or section of dialogue) focuses on. Identify any links between different parts of the text, such as motifs or references that occur more than once, and add annotations to identify effects and techniques within these. Complete 2-3xQTA paragraphs in response to the question.

Key Skill(s): Q____T___A____

Remember to... clearly explain your points using words like "because" or "meaning that" and ensure you cover more than one part of the text. Make sure not to analyse language here, either!

Possible sentence starters to consider:

At the beginning of the extract, the writer has chosen to focus on... when they wrote "..."

I think the writer has opened the extract with this because...

The writer then moves on to talk about... as shown in "..."

It is quite clear from this shift in focus from... to... that the writer wanted to...

Question 4: Evaluation

Marks: Timing:

Amount: Aim to produce two-three paragraphs evaluating to what extent you agree with the statement in the question.

Approach: Similar to Q2.: Identify the lines of the extract the question asks you to write about and draw a box around those lines. Read through the lines and highlight anything which could help you answer the question. Add annotations to identify effects and techniques within the quotations. Complete 2-3xQTA paragraphs in your response.

Key Skill(s): Q____T___A___E___

Remember to... use all your language analysis skills from question 2, but always link every point back to the statement and whether you agree/disagree with it.

Focus on: Finding evidence to back up the evaluative statement!

Possible sentence starters to consider:

One way the writer (reference to question) is... in "..."

This clearly portrays that... because...

The word '...' is particularly effective at conveying this idea because...

Alternatively, the writer may also be implying that...

As a reader, this description...

It is quite clear from this that the writer (reference to question)...

However, it could also be said that...

English Knowledge Organiser - Prejudice Scheme Y 9

Definition of Prejudice

Prejudice = a negative opinion that is

predetermined and is not based on reason or actual experience

Prejudices come from a variety of origins:

- Historical prejudice (slavery, wars, terrorism...)
- Roles in society (women = mothers/housekeepers, men = workers)
- Media depiction
- Family/peer opinions
- Laws and the government (gay and transgender rights)
- Scapegoating (Jews in Nazi Germany)
- Ignorance/lack of education

Can you think of any more examples? Write them below:

Slang = informal language that is used in relaxed situations usually verbally.

Slang can often be part of a person's dialect and there is specific examples of slang from different places.

But there is also many common slang words that are used across the world by English speaking people, such as:

- Swear words
- Insults
- Idioms
- Colloquial words such as 'knackered', or 'gobsmacked'

UK DIALECTS

- Scottish
- o Geordie
- o Scouse
- o Yorkshire
- o Welsh
- o Brummie
- West Country
- o R.P (Received Pronunciation)
- o Essex
- Cockney

Can you think of any examples of 'slang'?

How has it entered our language?

Slang I use	How it has entered language

Slang enters our language in lots of different ways:

Portmanteau:

- Email
- Hangry
- Emoticons

Acronym:

- LOL
- BRB

New words:

- Flex
- Binge-watch

Abbreviations:

- Brill
- Insta

Repurposing old words:

- Extra
- Wig
- Fire

English Knowledge Organiser 49 Prejudice Spring 2

Women Rights' Timeline: Read the key events for the dates below, based on the progress of Women's Rights. Consider which event you think is most significant.

1660- Margaret Hughes becomes the first professional actress.

1866- A law forbids women to work more than 10 hours a day.

1869- John Stuart Mill publishes his book The Subjection of Women

1885- Women first play tennis at Wimbledon

1886- Women are allowed to vote in county and borough elections.

1914- Britain gets its first policewomen.

1919- A new law opens certain professions to women.

1922-Ivy Williams is the first woman called to the bar of England and Wales.

1925- Ethel Mary Colman is the first woman Lord Mayor in Britain (of Norwich).

1928- In Britain, all women over 21 are allowed to vote the same as men.

1975- Women gain the right to maternity pay.

1983- Mary Donaldson becomes the first woman Lord Mayor of London.

Look/cover/check

Complete the blank side of the timeline

1680 – 1834 Transatlantic slave trade

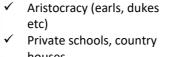
1686 – 1733 Nanny of the Maroons leads escaped Jamaican slaves

1841 - 1853
Solomon Northup
kidnapped into
slavery for 12
years

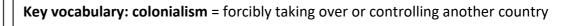
1854 - 1857 Mary Seacole nurses soldiers in the Crimean war

Task: LOOK/COVER/SAY

- Label the class pyramid
- Define and give examples of each class



Middle


class

Rich; usually inherits wealth

- Professional/ highly educated
- Doctors, teachers, skilled tradesperson such electrician etc
- ✓ Lower income
- ✓ Usually less formal education✓ Often manual
- work
- ✓ Shop assistant,

Examples of four countries that were part of the British Empire.

- 1. Canada
- 2. India
- 3. United Kingdom
- 4. Australia

Look/Cover/Say

- Passionate = feels/believes strongly
- 2. **Endurance** = stamina/resilience
- 3. **Determined** = strong resolve
- 4. **Courageous** = Brave
- 5. **Resourceful** = can overcome difficulties
- 6. **Independent** = doesn't need others

Look/Cover/Say

- 1. Passionate =
- 2. Endurance =
- 3. Determined =
- 4. Courageous =
- . Resourceful =
- 6. Independent =

Drama Knowledge Organiser

Year 9 Hamilton/Theatre Design Knowledge Organiser

Keywords:

Episodic Theatre – Scenes that stand alone and are constructed in small chunks, rather than creating a lengthy and slow build of tension

Ensemble – A group of actors who work together to create/perform a show

Evaluation - To evaluate something is to measure its worth. To evaluate drama and theatre you must be able to recognise what was and wasn't successful onstage and recognise all the elements that contribute to the impact of a production

Connotations - Refers to a meaning that is implied by a word apart from the thing which it describes explicitly

Musical Theatre - a form of theatrical performance that combines songs, spoken dialogue, acting and dance.

Previously learnt keywords and terminology

Synchronisation Monologue Soliloguy Thought tracking Multi-role Flashback Still image Narration Split focus Pitch Pace Pause Tone Volume Accent Gesture Posture Facial **Expressions Projection Diction**

Lighting

Spotlight Fresnel Birdie Strobe Gels Par can Flood Follow spot Gobo

Roles & responsibilities of the theatre

- * Set Designer
- * Costume Designer
- * Director
- * Lighting Designer
- * Sound Designer
- * Performer
- * Stage Manager
- * Understudy
- * Technician

Alexander Hamilton 1757 - 1804

Evaluation sentence starters

I thought it was effective...

The piece was successful....

They achieved their objective...

I was unsure about...

I wasn't keen on...

An area to develop is...

A positive aspect was...

A negative aspect was...

Lin Manuel Miranda wrote and starred in Hamilton. Hamilton averages a whopping 144 words per minute with 20,520 total words!

List the songs you have listened to from Hamilton

- * Alexander Hamilton
- * 10 Duel Commandments
- * You'll be back
- * Aaron Burr Sir
- * Schuyler Sisters
- * Guns and Ships
- * Helpless
- * A Winter's Ball

Ĭ				
	Stage Positioning			
	Upstage	Upstage	Upstage	
	Right	Centre	Left	
	Centre	Centre	Centre	
	Stage Right	Stage	Stage Left	
	Downstage	Downstage	Downstage	
	Right	Centre	Left	

Audience

Stage Configurations

Proscenium Arch

Theatre in the Round

Thrust

Traverse

Promenade

The Schuvler Sisters

Arron Burr

George Washington

Thomas Jefferson & James Maddison

Drama Knowledge Organiser

Script Writing and Devising

How do we format a script?

Characters are always typed in capital letters and in Bold, followed by a colon.

Stage directions within dialogue are typed in italics and in brackets.

typed in italics.

LINDA: (frustrated) Have we come all this way just to look at the bleeding

estate? Mickey, we're fourteen.

LINDA beams at him. MICKEY can't take it and looks the other way.

MICKEY: Look LINDA: What?

MICKEY: There's that lad lookin' out the window. I see him sometimes

when I'm up here.

LINDA Oh...he's gorgeous, isn't he?

MICKEY: What?

Dialogue is indented from the character name.

KEYWORDS:

Devising Performance

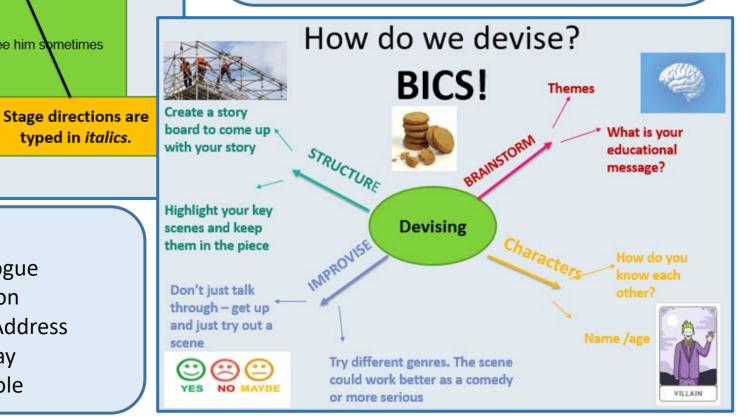
Stimulus **Audience**

Playwright Character

Dialogue **Brainstorm**

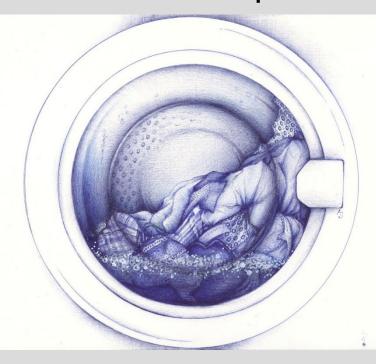
Structure Theatre

DEVISING TECHNIQUES:


Tableau Monologue

Slow Motion **Narration**

Direct Address Thought-track


Flashback/forward Role-Play

Multi-role Split-focus

Andrea Joseph

Key features:

Biro pen- Cross hatching-Hatching- Layering- Shape-Form- Texture- Detail Working in the style of an artist: You need to use these techniques and features in your own study. KEY WORDS – test yourself! (definitions on the next page)
Shadow- Highlight- Tone- Cross hatching- Hatching- Mark Making- LayeringShape- Form- Detail

Artist Research Year 9 Spring term Mark Making techniques **Stippling** Hatching Scumbling Cross hatching

In the style of:

When creating a piece of art in the style of an artist it is very important you thoroughly understand their techniques in order to copy them effectively.

Besides using their techniques, you also need to take pride in your work and be as neat as possible. Here are some things to consider:

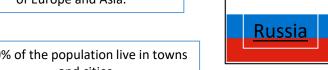
- Have you layered up mark making?
- Have you paid attention to detail?
- Have you shown highlights and shadows?
- Are the proportions correct?
- Have you used a combination of hatching and cross hatching?
- Is your work as neat as it can be?

KEY WORDS AND MEANINGS:			
Mark Making	The different lines, dots, marks, patterns, and textures we create in an artwork.		
Hatching	A shading technique which uses a series of thin, parallel lines that give the appearance of shadow in varying degrees.		
Cross hatching	The drawing of two layers of hatching at right-angles to create a mesh-like pattern.		
Stippling	The creation of a pattern simulating varying degrees of solidity or shading by using small dots.		
Scumbling	Scumbling is a shading technique achieved by overlapping lots of little circles.		
Tone	Tone in art simply refers to how light or dark a colour is. Each colour has an almost infinite number of tones.		
Layering	Simply placing one layer of colour/material/tone/technique over another.		
Form	Form refers to objects that are 3-Dimensional, or have length, width, and height.		
Highlight	The lightest part or one of the lightest parts of a painting, drawing, etc.		
Shadow	A dark area where light from a light source is blocked by an opaque object.		
Colour code: BLUE	E= Tier 3 words ORANGE= Tier 2 words Look out for colour coding during lessons!		

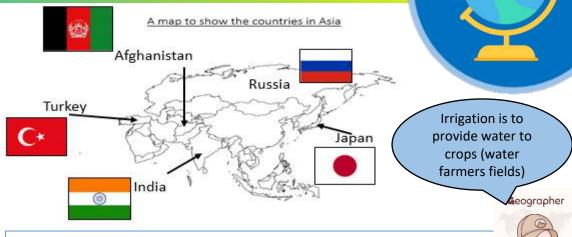
Geography Knowledge Organiser

A megacity is a city with more than 10 million people.

Eurasia is the combined landmass of Europe and Asia.


70% of the population live in towns and cities.

Around 55% of Russia is uninhabited.


Russia has 9 time zones.

The life expectancy of men is 64 in comparison to the UK which is 80.

> The first man visited space in 1950.

Russia is 70 times bigger than the UK.

Case Study: Bangladesh Floods

Floods are an annual event. The majority of the 157 people that live in Bangladesh live on **floodplains** of the Padma (Ganges) and Jamuna (Brahmaputra).

Flooding is essential as it brings water to irrigate the crops. Also as the rivers flood it lines the fields with silt which fertilises the soil.

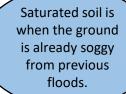
75% of the country is below 10m above sea level.

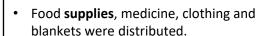
Why do floods happen in Bangladesh?

Human Deforestation Urbanisation **Impermeable** surfaces **Building on Flood** plains

Monsoons Snow melt Heavy precipitation Low lying land

Physical



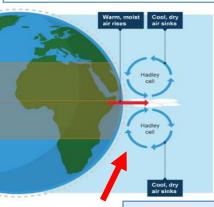

Cyclones cause coastal flooding, low-lying land, melt water from the **snow** on the Himalayas, heavy **monsoon** rains (500mm per day), increased urbanisation

2007 flood: Prolonged and heavy rainfall (the ground became saturated) and the melting of glaciers in the Himalayas.

Immediate Responses (straight away)

- Local people helped search for missing people.
- Water Aid helped by bringing water purification tablets and education campaigns.
- Free seed given to farmers (these took months to grow)

Long Term Responses (weeks, months, years later)


- Volunteers and aid workers were left to repair the damage due to lack to funds
- The UN launched and appeal to raise \$74 million, but had received only 20% of this
- USA donated a weather station to help forecast future catastrophic flooding.
- Flood Action Plan is in place embankments were built – these are not always successful.

Geography Knowledge Organiser

Deserts are dry or **arid** areas that receive less than **250** mm of rain each year. Deserts can be **hot** or **cold**. They contain **flora** and **fauna** that are specially adapt to these extremely dry conditions.

Why do deserts form?

- Air around the Tropics of Capricorn and Cancer is dry. This is a zone of high pressure (air sinks)
- Air at the equator rises and cools condensation then forms rain.

Most hot deserts are found between 15-30° north and south of the equator.

A climate graph of a desert biome

Diurnal range – the difference between the lowest temperature at night and the highest temperature during the day.

Kev Word

Internal Migration

Immigration

(INcoming)

Migrant

- Climate graphs show the annual (yearly) rainfall for an area.
- The bar represents the precipitation.
- The line graph shows the temperature

From the climate graph I can see that the highest precipitation is in the month of January (2.4 cm) and the highest temperature is July/ August (36 degrees)

Definition

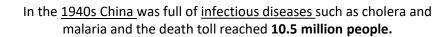
moving with each season or in response to labour or climate

a person who has been forced to leave their country in order

moving within a state, country, or continent

a person who moves form one place to another

to escape war, persecution, or natural disaster


leaving one country to move to another

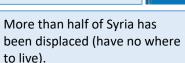
moving into a new country

The Gobi Desert is the largest desert in Asia, spanning over 1,600 km (1,000 miles) over China and Mongolia, and the 5th largest desert in the world.

China: The Four Pests Campaign

The government enforced a policy to eradicate the pests (kill rats, mosquitos, flies and sparrows) to prevent any further deaths.

The policy saw the death of 1 billion sparrows, 1.5 billion rats. 100 million KG of flies and 11 million KG of mosquitos.



With sparrows (consumers) locusts came and ate all of the grain. As a result, across China million starved (famine) and 20 - 30 million people died between 1958 - 1962.

- Syria is located in the continent of Asia.
- Syria is SW of the UK.

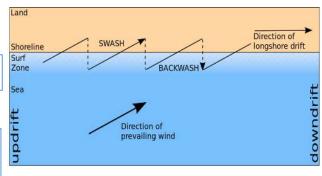
A peaceful uprising against the president of Syria on the 15th March 2011 turned into a full scale civil war.

More than half of Syria has been displaced (have no where to live).

conditions

1.5 million people with permanent disabilities, including 86,000 who have lost limbs.

Geography Knowledge Organiser - Coasts

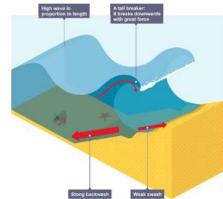

How do waves shape the coastline?

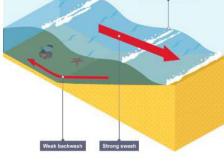
Waves form when the wind blows over the sea. The size and energy of the wave depends on:

- The fetch
- Strength of the wind
- How long the wind has been blowing

Find out more about longshore drift.

How does longshore drift move material along the coast?




Sediment is any solid material eroded, Geographer transported and deposited along the coast

Longshore drift is the movement of material along the coast. The prevailing wind blows waves carrying sediment into the beach at an angle, the waves break on the shore and as the water runs back into the sea it carries sediment back down the beach in

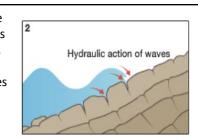
a zig zag motion.

Destructive Wave

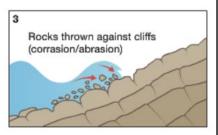
Constructive Wave

- Weak swash
- Strong backwash
- Removes sand (sediment) from the beach
- · Destroys the beach
- The waves are steep and close together

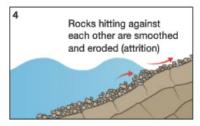
- Strong swash
- Weak backwash
- Brings sand (sediment) on to the coast and builds the beach
- Creates the beach
- The waves are low and further apart

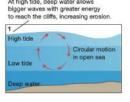


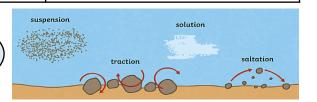
Backwash is the movement of sediment back towards the sea at a 90 degree angle.


Erosion

Erosion – is the wearing away of rock along the coastline. Destructive waves are responsible for the erosion (breaking down) of the coastline.


Hvdraulic action - this is the sheer power of the waves as they smash against the cliff. Air becomes trapped in the cracks in the rock and causes the rock to break apart.


Abrasion - this is when pebbles grind along a rock platform, much like sandpaper. Over time the rock becomes smooth


Attrition - this is when rocks that the sea is carrying knock against each other. They break apart to become smaller and more rounded.

Solution - this is when sea water dissolves certain types of rocks. In the UK, chalk and limestone cliffs are prone to this type of erosion.

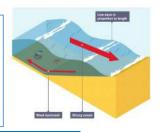
Geographer Fetch is how far a wave travels

Geography Knowledge Organiser - Coasts

Deposition is when material that is being transported is dropped by constructive waves. It happens because waves have less energy. Deposition happens when the swash is stronger than the backwash and is associated with constructive waves

Deposition is likely to occur when:

- •waves enter an area of shallow water:
- •waves enter a sheltered area, eg a cove or bay;
- •there is little wind;
- •a river or **estuary** flows into the sea reducing wave energy;
- •there is a good supply of material and the amount of material being transported is greater than the wave energy can transport.


The conditions required for sand dunes to form include:

- •a large supply of sand
- •a large flat beach
- •time for sand to dry, so a large tidal range is needed
- •an onshore wind (wind blowing from the sea to the land) for sand to be moved to the back of the **beach**
- •an obstacle for the dune to form against e.g pebble or driftwood
- Sand dunes are created around obstacles on the beach eg a dead animal

 The sea brings sediment to the beach and then the wind redistributes that sediment.
- When the wind encounters the beach obstacles velocity falls and sediment is deposited

 this creates the embryo dune.

Over time, tough plants known as **pioneers** such as Marram grass take root on the dune, their root systems helping to stabilise the sand.

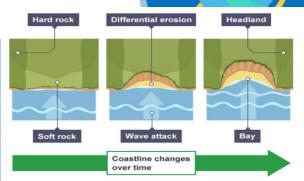
A **spit** is an extended stretch of beach material that projects out to sea and is joined to the mainland at the other end.

Sand Dunes

Characteristics of sand dunes

Spits are formed where the prevailing wind blows at an angle to the coastline, resulting in **longshore drift**.

Spits


- 1.Longshore drift moves material along the coastline.
- 2.A **spit** forms when the material is deposited.
- 3. Over time, the spit grows and develops **a hook** if wind direction changes further out.
- 4. Waves cannot get past a spit, which creates a sheltered area where silt is deposited and mud flats or **salt marshes** form


Headlands and Bays

Headlands and bays form at a discordant coastline where there are layers of hard and soft rock.

- The bands of soft rock, such as sand and clay, erode more quickly than the more resistant rock, such as chalk.
- The section of land jutting out into sea is called a headland.
- The area where the soft rock has eroded away is called a bay.
- Sand is deposited in the sheltered bay to form beaches.

Caves, Arches, Stacks and Stumps

Caves occur when waves force **(hydraulic action)** their way into cracks in the cliff face.

If the cave is formed in a headland, it may eventually break through to the other side forming an **arch**.

The arch will gradually become bigger until it can no longer support the top of the arch. When the arch **collapses**, it leaves the headland on one side and a **stack** (a tall column of rock) on the other

Features formed by erosion

The stack will be attacked at the base in the same way that a wave-cut notch is formed. This weakens the structure and it will eventually **collapse** to form a **stump**

History Knowledge Organiser:

Turning point of World War 2

耳

Dunkirk - 26 May to 4 June 1940 The Battle of Dunkirk was fought around the French port of Dunkirk during the Second World War, between the Allies and Nazi Germany. As the Allies were losing the Battle of France on the Western Front, the Battle of Dunkirk was the defence and evacuation of British and other Allied forces to Britain. By saving the British expeditionary Force, the British government had kept its professional army alive. It would be able to fight in future battles and train new recruits.

In the USSR, after 4 months of very fierce fighting in the city of Stalingrad, a large proportion of the German army surrendered. Gradually, Soviet forces (the USSR's forces) began to push the German army out of the USSR and back towards Germany. This was the first time the Germans had retreated in large numbers. At the same time, British and American bombers began air raids on Germany.

Pearl Harbour – 7th December 1941

The attack on Pearl Harbour was a surprise military strike by the Imperial Japanese Navy Air Service upon the United States (a neutral country at the time) against the naval base at Pearl Harbour in Honolulu, Hawaii. Hundreds of Japanese fighter planes descended on the base, where they managed to destroy or damage nearly 20 American naval vessels, including eight battleships, and over 300 airplanes. More than 2,400 Americans died in the attack, including civilians, and another 1,000 people were wounded. The attack led to the United States' formal entry into World War II the next day.

Atomic Bomb - 6 August 1945

The USA dropped an **atomic bomb** on the Japanese city of Hiroshima. The blast devastated an area of five square miles, destroying more than 60 per cent of the city's buildings and killing around 140,000 people. Three days later the USA dropped a second atomic bomb on the Japanese city of Nagasaki, killing around 74,000 people. The official US justification for the dropping of the two atomic bombs was to force the Japanese government to surrender, which it did on 14 August 1945. Some historians have speculated that the bombs might also have had another purpose - to send a warning to the Soviet Union about the strength of the American military

History Knowledge Organiser: Holocaust and Genocide

1933

- •The **SA** organised a boycott of Jewish shops and businesses.
- •Books by Jewish authors were publicly burnt.
- •Jewish civil servants, lawyers and teachers were sacked, and Jewish doctors and dentists could not treat **Aryans**.
- •Science lessons about race were introduced which taught that Jews were subhuman.

1934

- •Jewish shops were marked with a yellow star.
- •Jews had to sit on separate seats on buses and trains. Many councils banned them from public spaces.

1935

•The Nuremberg Laws stripped Jews of German citizenship, outlawed marriage and sexual relations between Jews and Germans, and removed all the civil and political rights of the Jews. These laws were to be the foundation for much of the extreme persecution which took place later

1938

- •Jews were ordered to register all wealth and property.
- •Jews were forced to change their first names: males would be known as Israel, females as Sarah.
- •Kristallnacht 9 November (The Night of Broken Glass). The **SS** organised attacks on Jewish homes, businesses and synagogues in retaliation for the assassination of the German ambassador to France by a Jew. During Kristallnacht, 400 synagogues and 7,500 shops were destroyed. Jews were then made to clear up the destruction on their hands and knees and pay a fine of one billion marks to the government. The remaining Jewish property was then confiscated.

1939

•The Nazis, who had been encouraging Jews to emigrate from 1933 onwards, now started "forced" emigration.

Scan the QR code to watch a short clip on Jewish persecution

Adolf Hitler – leader of the Nazi Party. He was a great orator (public speaker) who hypnotised his audiences. In his writings and speeches talked of destroying the Jewish race and passed laws against Jewish people. His anti-Semitic beliefs and policies were implemented soon after the Nazis came to power. He believed the Aryan race to be superior,

Heinrich Himmler was the Head of the SS. He was in overall charge of the 'Final Solution' and believed that he was carrying out Hitler's instructions to exterminate the Jews. He made sure news about camps were secret; and had propaganda films made showing how well Jews were being treated.

German people of all jobs and backgrounds saw the Jews were being treated differently and did not protest. Many had even stopped buying goods at Jewish stores. Only a small number of German people stood up for the Jews.

Anne Frank was a German girl and Jewish victim of the Holocaust who is famous for keeping a diary of her experiences. Anne and her family went into hiding for two years to avoid Nazi persecution

History Knowledge Organiser:

Holocaust and Genocide

auschwitz-

Death camps

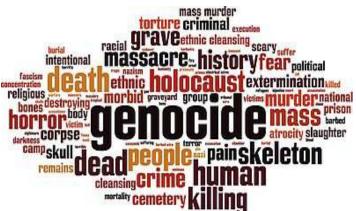
All over the world, Auschwitz has become a symbol of terror, genocide, and the Holocaust

The Germans isolated all the camps and sub-camps from the outside world and surrounded them with barbed wire fencing. All contact with the outside world was forbidden.

Key words:

Holocaust - the mass murder of Jewish people under the German Nazi regime during the period 1941–5. More than 6 million European Jews, as well as members of other persecuted groups such as Romani, gay people, and disabled people, were murdered at concentration camps such as Auschwitz.

Genocide – The deliberate killing of a large number of people from a particular nation or ethnic group with the aim of destroying that nation or group.


Hitler's hate list •

- Jewish people
- Gypsies (Sinti and Roma)
- Disabled people
- Homosexuals
- The 'Rhineland Bastards' (African/German heritage)
- Jehovah Witnesses
- THE ASOCIALS: anti-Nazis, communists, trade unionists, the homeless, prostitutes, alcoholics

Hitler played on fears that one day Germans would be outnumbered by inferior peoples

During the **Rwandan genocide** of 1994, members of the Hutu ethnic majority in the east-central African nation of Rwanda murdered as many as 800,000 people, mostly of the Tutsi minority. Started by Hutu nationalists in the capital of Kigali, the genocide spread throughout the country with shocking speed and brutality, as ordinary citizens were encouraged to take up arms against their neighbours. By the time the Tutsi-led Rwandese Patriotic Front gained control of the country through a military offensive in early July, hundreds of thousands of Rwandans were dead and 2 million refugees fled Rwanda.

The Cambodian Genocide was the murder of millions of Cambodians by the Khmer Rouge. The Khmer Rouge were led by Pol Pot and held radical totalitarian beliefs. They wanted to create a classless, rural, agricultural society where personal property, currency, religion and individuality did not exist. People associated in any significant way with the previous government, religion, or education were targeted for persecution, imprisonment, torture and murder. Some Cambodians were also exploited as forced labourers by the regime and died as a result of over-work and malnutrition. Ineffective rulers and their economic mismanagement caused significant shortages of food and medicine. Hundreds of thousands of Cambodians began to die from hunger caused by the famine and treatable diseases such as malaria.

RE Knowledge Organiser.

Relationships

Key concepts / words

Gender Equality – All genders have the same rights

Responsibilities – Actions or duties you are expected to carry out.

Roles – The position of a person

Sacrament – an outward sign of an inward blessing / a ceremony blessed by God

Families and gender roles

Families are important in Christianity and essential for society. Through the family, values are learnt and faith is developed. Children should respect their parents as the 10 commandments teach 'honour your mother and father'.

Men and women should have equal roles as all God's creation and 'God made man in His image'.

Equal	Not equal
Jesus first revealed himself to women after his resurrection. 'God made man in His image' – all equal 'Neither Greek or Jew, slave or free, male of female, all one in Jesus'. – all equal	Jesus's disciples were men. Women are not ordained in the Catholic Church St Paul refers to 'women should learn in quietness' and that women should not teach or assume 'authority over a man'. In Islam women cannot be Imams.
Islam – 'All equal as the teeth of a comb' – all equal	Men and women worship separately in the Mosque.

<u>Adultery</u> - Having sexual relations with someone other than your marriage partner.

Not allowed and a sin. Breaks the marriage vows and the 10 commandments teach 'do not commit adultery'.

Adultery may harm the family unit. In Islam it goes against the unity and peace of the Ummah and Muslims believe you will be judged in the afterlife on your actions in this life.

Marriage

Marriage is considered as God's intention – Adam and Eve were married.

Marriage is a **sacrament** and blessed by God.

Vows are taken to show commitment for example 'till death do us part'.

Marriage is the place to raise a family and have sex.

Divorce and remarriage

Catholics believe only death can end a marriage 'til death do us part'. The sacrament with God is broken. The Bible teaches 'what God has joined together let no man separate'.

Remarriage is seen as adultery and a sin 'do not commit adultery'.

Foe other Christians divorce maybe the 'lesser of two evils' for example if abuse or adultery has been committed – Jesus taught care and compassion 'Love your neighbour'. In Islam divorce is a last resort and a three month reconciliation period must happen – Iddah period. Qur'an teaches 'Of all lawful things, divorce is the most hated by Allah'. A dowry provided at marriage in case of divorce and remarriage is allowed.

RE Knowledge Organiser.

Relationships

Adultery – Having sexual relations with someone other than your marriage partner

Divorce – Legally ending a marriage

Cohabitation - To live together in a sexual relationship without being married or in a civil partnership

Commitment - A sense of dedication and obligation to someone or something

Contraception - Methods used to prevent a woman from becoming pregnant during or after sexual intercourse

Purpose of sex

Sex is a gift from God. After the creation of human life God gave the blessing to 'be fruitful and multiply'.

Sex should take place within a committed relationship such as marriage.

'One flesh' – you should only have one sexual partner and that should be once you are married. Many Christians believe in Chastity, the belief in no sex before marriage. Adultery is forbidden and the 10 commandments teach 'Do not commit adultery'. Within Islam sex is a gift from Allah to reproduce and should be used within marriage. It is a Muslims duty to have children to strengthen the Ummah.

Contraception

Catholics do not agree with the use of contraception as it goes against the sanctity of life belief that God creates all life, contraception interferes with God's plan.

The purpose of sex is to 'be fruitful and multiply' contraception stops procreation.

Some believe contraception devalues sex and encourages **promiscuity**.

However, there is nothing in the Bible that forbids the use of contraception. Many 'Your body is a temple' – contraception helps to protect your body from unwanted STIs. Christians and Muslims will allow if both partners agree.

Muslims will not allow contraceptives that can potentially harm the body.

Same sex relationships

Many Christians oppose same sex relationships on Biblical grounds. They believe God intended for man and woman to be in a committed relationship because God created Adam and Eve. The Bible teaches 'No man should lie with another as he would a woman'. This is interpreted to mean same sex relationships are wrong. Also the purpose of sex is to reproduce 'be fruitful and multiply' same sex couples cannot do this.

However, Jesus taught *'love'*, he didn't say who you had to love. Others would argue that '*God made man in His image'* and that we are all created equally and the way in which God intended.

Same sex relationships are **haram** and forbidden in Islam. Sex should only take place between a man and woman.

RE Knowledge Organiser.

Human Rights

Key concepts / words

Prejudice – Pre judging – judging people to be inferior or superior without a cause

Discrimination – Acts of treating groups of people, or individuals differently, based on prejudice

Censorship - The practice of suppressing and limiting access to materials considered offensive or a threat to security. People maybe restricted by censorship laws.

Personal Conviction -

Something a person strongly feels of believes in

Relative poverty - A standard of poverty measured in relation to the standards of society in which a person lives.

Religious expression -

Prejudice and discrimination are unacceptable in Christianity.

They go against religious teachings of equality. 'God made man in His image'.

Jesus didn't discrimination in the Parable of the Good Samaritan and taught 'Love your neighbour'. The Bible also teaches 'There is neither Greek or Jew, slave or free, male or female, all one in Jesus'. The Golden Rule states to treat others as you would want to be treated.

In Islam all people are equal as they are all Allah's creation. The teaching 'All equal as the teeth of a comb' promotes equality.

Personal Conviction is something a person strongly believes in and their actions may conflict with the law or authroity Martin Luther King had a personal conviction for racial equality. He led peaceful protests, used speeches, sit ins and non violence to fight against injustice. He believed all should be equal as we are all 'Made in God's image'. He also followed the example of Jesus 'Love your neighbour'.

Malala Yousafzai strongly believed girls in Pakistan deserved an education as this is her human right. She went against the authority if the Taliban in Pakistan who were not allowing girls an education. She was shot three times by the Taliban while on the school bus. Islam teaches 'All equal as the teeth of a comb' and we are all Allah's creation so should therefore be treated equally and are entitled to our human rights.

Wealth and Charity

Christians believe people should use their wealth to support others and they will be rewarded in the afterlife. The Bible teaches 'It is easier for a camel to pass through the eye of a needle than for a rich man to get into heaven.'

Christians also believe they should support those in need and charities as Jesus taught *'love your neighbour'*. Parable of the Good Samaritan teaches us to help those in need.

Christian Aid aim to end poverty and injustice. Muslims believe wealth is gift from Allah and should be used correctly. You will be judged on how you have used your wealth. Muslims are expected to give Zakah. This is the third pillar of Islam and it is a Muslims duty to give 2.5% of wealth to charity to help those in need. They follow the example of the Prophet Muhammad. Islamic relief is an example of an Islamic charity.

TYPES OF ANGLE AND ANGLES IN POLYGONS

Key Concepts

Regular polygons have equal lengths of sides and equal angles.

Angles in polygons

Sum of interior angles = $(number\ of\ sides - 2) \times 180$

Exterior angles of **regular** polygons = $\frac{360}{number\ of\ sides}$

Types of angle

There are four types which need to be identified – acute, obtuse, reflex and right angled.

Examples

Acute is less than 90°

Obtuse is between 90° and 180°

Right angled is 90°

Reflex is between 180° and 360°

Regular Pentagon

Exterior angles

$$r = \frac{360}{5} = 72^{\circ}$$

Sum of interior angles

$$= (5-2) \times 180$$

 $= 540^{\circ}$

Interior angle = $\frac{540}{5}$ = 108°

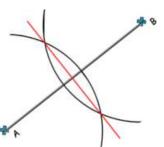
Y9

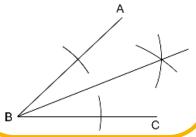
Key Words

Polygon
Interior angle
Exterior angle
Acute
Obtuse
Right angle

Reflex

Questions


- 1) Calculate the sum of the interior angles for this regular shape.
- 2) Calculate the exterior angle for this regular shape.
- 3) Calculate the size of one interior angle in this regular shape.


CONSTRUCTIONS

Key Concept

Line Bisector

Angle Bisector

Key Words

Construction: To draw a shape, line or angle accurately using a compass and ruler.

Loci: Set of points with the same rule.

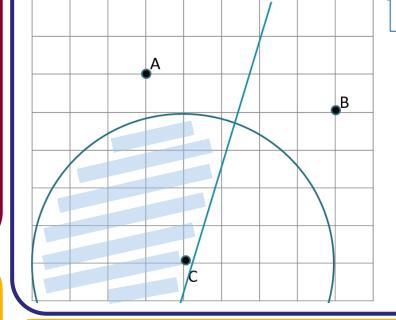
Parallel: Two lines which never intersect.

Perpendicular: Two lines that intersect at 90°.

Bisect: Divide into two parts.

Equidistant: Equal

distance.


Examples

Shade the region that is:

- closer to A than B
- less than 4 cm from C

Line bisector of A and B

Circle with radius 4cm

Y9

Tip

Watch for scales.

For a scale of: 1 cm = 4 km.

20 km = 5 cm6 cm = 24 km

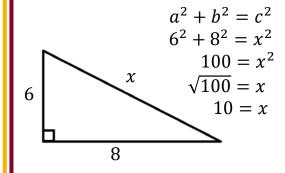
Questions

- 1) Draw these angles then bisect them using constructions:
 - a) 46°
- b) 18°
- c) 124°
- 2) Draw these lines and bisect them: a) 6cm
- b) 12cm

PYTHAGORAS

Key Concepts

Pythagoras' theorem and basic trigonometry both only work with right angled triangles.


Pythagoras' Theorem – used to find a missing length when two sides are known

$$a^2 + b^2 = c^2$$

c is always the hypotenuse (longest side)

Pythagoras' Theorem

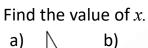
Examples

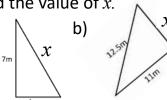
$$a^{2} + b^{2} = c^{2}$$

$$y^{2} + 8^{2} = 12^{2}$$

$$y^{2} = 12^{2} - 8^{2}$$

$$y^{2} = 80$$


$$y = \sqrt{80}$$


$$y = 8.9$$

Y9

Key Words

Right angled triangle **Hypotenuse** Length Shorter-side Square Square-root

Questions

4 OPERATIONS WITH FRACTIONS

Key Concepts

An improper fraction is when the numerator is larger than the denominator e.g. $\frac{20}{12}$

Converting from a mixed number into an improper fraction:

$$2 \frac{3}{5} = \frac{(2 \times 5) + 3}{5} = \frac{13}{5}$$

A reciprocal is the value that when multiplied by another gives the answer of 1.

Eg. $\frac{1}{2}$ is the reciprocal of 8. $\frac{2}{5}$ is the reciprocal of $\frac{5}{2}$

$$1\frac{2}{3} + 2\frac{1}{4}$$

$$2\frac{2}{3}-1\frac{1}{4}$$

$$= \frac{5}{3} + \frac{9}{4}$$
 improper fraction
$$= \frac{8}{3} - \frac{5}{4}$$

$$= \frac{20}{12} + \frac{27}{12} \xrightarrow{\text{Find a common} \atop \text{denominator}} = \frac{32}{12} - \frac{15}{12}$$

$$= 3\frac{11}{12}$$
Convert back into
a mixed number
$$= 1\frac{5}{12}$$

$$2\frac{2}{3} - 1\frac{1}{4}$$
 $1\frac{1}{3} \times 2\frac{3}{4}$ $2\frac{1}{3} \div 1\frac{3}{5}$

$$=\frac{4}{3}\times\frac{11}{4}$$

$$=\frac{44}{12}$$

$$=3\frac{8}{12}$$

$$2\frac{1}{3} \div 1\frac{3}{5}$$

 $= \frac{7}{3} \div \frac{8}{5}$ Find the reciprocal of the second fraction....

$$=\frac{7}{3}\times\frac{5}{8}$$

...and multiply

$$=\frac{35}{24}$$

$$=1\frac{11}{24}$$

Examples

Y9

Key Words

Fraction

Equivalent

Reciprocal

Numerator Denominator

Improper/Top heavy Mixed number

Calculate:

Calculate: What is the reciproof 1)
$$1\frac{2}{3} + 2\frac{3}{4}$$
 3) $3\frac{1}{5} \times 1\frac{2}{3}$ 5) $\frac{2}{3}$ 7) 0.75

2)
$$3\frac{3}{4} - 1\frac{1}{3}$$

3)
$$3\frac{1}{5} \times 1\frac{2}{3}$$

What is the reciprocal of:
$$\frac{2}{5} = \frac{7}{100} = \frac{7}{100}$$

2)
$$3\frac{3}{4} - 1\frac{1}{3}$$
 4) $1\frac{3}{5} \div 2\frac{7}{10}$ 6) 9

INDICES AND ROOTS

Key Concepts

$$a^m \times a^n = a^{m+n}$$

$$a^m \div a^n = a^{m-n}$$

$$(a^m)^n = a^{mn}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{-m} = \frac{1}{a^m}$$

Examples

Simplify each of the following:

1)
$$a^6 \times a^4 = a^{6+4}$$

= a^{10}

4)
$$(3a^4)^3 = 3^3 a^{4 \times 3}$$

= $27a^{12}$

6)
$$a^{\frac{1}{2}} = \sqrt{a}$$

2)
$$a^6 \div a^4 = a^{6-4}$$

= a^2

$$5)\frac{5^2 \times 5^6}{5^4} = \frac{5^8}{5^4}$$

7)
$$9^{\frac{1}{2}} = \sqrt{9}$$

3)
$$(a^6)^4 = a^{6\times4}$$

$$a^{0/4} = a^{0/4}$$

= a^{24}

$$=5^{8-4}$$

 $=5^{4}$

8)
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

= 3 or -3

Y9

Key Words

Powers Roots **Indices**

Reciprocal

1)
$$a^3 \times a^2$$
 2) $b^4 \times b$ 3) $d^{-5} \times d^{-1}$ 4) $m^6 \div m^2$ 5) $n^4 \div n^4$

$$b^4 \times b$$

)
$$d^{-5} \times d$$

6)
$$\frac{8^4 \times 8^5}{96}$$
 7) $\frac{4^9 \times 4}{4^3}$ 8) $(3^2)^5$ 9) $81^{\frac{1}{2}}$ 10) 5^{-2}

$$(3^2)^5$$

9)
$$81^{\frac{1}{2}}$$

AVERAGES FROM A TABLE

Key Concepts

Modal class (mode)

Group with the highest frequency.

Median group

The median lies in the group which holds the $\frac{total\ frequency+1}{2}$ position.

Once identified, use the cumulative frequency to identify which group the median belongs from the table.

Estimate the mean

For grouped data, the mean can only be an estimate as we do not know the exact values in each group. To estimate, we use the midpoints of each group and to calculate the mean we find $\frac{total\ fx}{total\ f}$.

Examples

Length (L cm)	Frequency (f)	Midpoint (x)	fx
$0 < L \le 10$	10	5	10 × 5 = 50
$10 < L \le 20$	15	15	15 × 15 = 225
$20 < L \le 30$	23	25	23 × 25 = 575
$30 < L \le 40$	7	35	7 × 35 = 245
Total	55		1095

a) Estimate the mean of this data.

step 1: calculate the total frequency

step 2: find the midpoint of each group

step 3: calculate $f \times x$

step 4: calculate the mean shown below

$$\frac{Total fx}{Total f} = \frac{1095}{55} = 19.9 \text{cm}$$

- b) Identify the modal class from this data set. " the group that has the highest frequency" Modal class is $20 < x \le 30$
- c) Identify the group in which the median would lie. Median = $\frac{Total\ frequency+1}{2} = \frac{56}{2} = 28th\ value$

"add the frequency column until you reach the 28th value" Median is the in group $20 < x \le 30$

Y9

Key Words

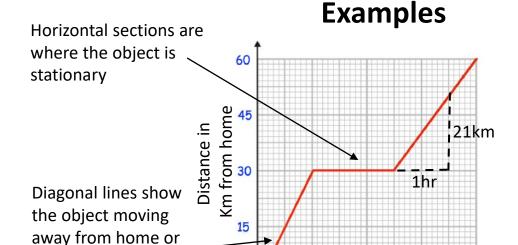
Midpoint Mean Median Modal

Cost (£C)	Frequency	Midpoint	
$0 < C \le 4$	2		
4 < C ≤ 8	3		
8 < <i>C</i> ≤ 12	5		
$12 < \mathcal{C} \le 16$	12		
$16 < C \le 20$	3		

From the data:

- a) Identify the modal class.
- b) Identify the group which holds the median.
- c) Estimate the mean.

ANSWERS: a) 12
$$<$$
 C \leq 16 b) $\frac{25+1}{2}$ (a) $\frac{25+1}{2}$ (b) $\frac{25+1}{2}$ (b) $\frac{25+1}{2}$


DISTANCE-TIME GRAPHS

Key Concepts

A **distance-time** graph, plots time against the distance away from a starting point.

Speed can be calculated from these graphs by finding the gradient of the graph.

Horizontal lines are sections where the object is stationary.

13:00

$$Speed = \frac{distance}{time}$$

$$Speed = \frac{21}{1}$$

$$Speed = 21km/h$$

V9

Key Words

home

moving closer to

Distance
Time
Speed
Gradient
Stationary

14:00

16:00

15:00

Time

17:00

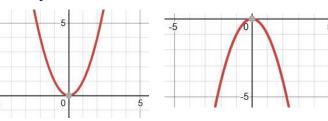
A distance-time graph shows the journey of someone from home to the shop and back again.

- 1) How long were they at the shop for?
- 2) How far away from home is the shop?
- 3) How far did they travel in total?
- 4) What speed did they travel on the way to the shop in km/h?

0 + * 0 =

QUADRATIC GRAPHS

0


Key Concepts

A quadratic graph will always be in the shape of a parabola.

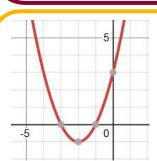
$$y = x^2$$

Y9

$$y = -x^2$$

The roots of a quadratic graph are where the graph crosses the x axis. The roots are the solutions to the equation.

$$y = x^2 + 2x - 8$$


A quadratic equation can be solved from its graph.

The roots of the graph tell us the possible solutions for the equation. There can be 1 root, 2 roots or no roots for a quadratic equation. This is dependent on how many times the graph crosses the x axis.

Roots
$$x = -4$$

 $x = 2$
 y intercept = -8

Quadratic Roots Intercept Turning point Line of symmetry

Identify from the graph of $y = x^2 + 4x + 3$:

- 1) The line of symmetry
- 2) The turning point
- 3) The *y* intercept

Turning point (-1, -9)

4) The two roots of the equation

WITL KNOWLEAGE Organise

il y avait – there was/were était – was c'était – it was étaient – were c'étaient – they were il avait - he had ils avaient - they had

Perfect Te	ense 💖	PAST	12
Subjec	Avoir	Past partic	ciple

· ·		
J'	ai	Take off ending
Tu	as	from infinitive:
II/elle	а	am vamba — Á

avons

avez

ont

Nous

Vous

Ils/elles

-er verbs = é
-ir verbs = i
-re verbs = u

Perfect Tense			
Subject	Être	Past participle	
Je	suis	Take off ending	
Tu	Es	from infinitive:	
II/elle	Est	-er verbs = é -ir verbs = i	
Nous	Somm	-re verbs = u	
	es	**Agreement of PP	
Vous	Êtes	(f) + e	
Ils/elles	sont	(pl) +s (f+pl) + es	

Opinions & Pronouns 0

Irregular verbs with avoir

> eu - had bu - drank vu – saw lu - read fait - did dit - said

écrit - wrote

DR. & MRS. VANDERTRAMP

Devenir

Revenir

Monter

Rentrer

Sortir

Venir

Arriver Naître

Entrer

Descendre

Retourner

Tomber

Rester

Aller Mourir

Partir

P me fascine ça m'énerve me plaît m'ennuie m'amuse me fâche (angers me) m'intéresse

me rend triste

me rend content(e)

beaucoup (de)

Connectives / frequencies

a lot (of)

alors /donc so, therefore car / parce que because dernier/dernière last

finally trop = too assez/très = quite /very = a bit un peu vraiment = really incrovablement = incredibly

Participe Passé Devenu(e)(s)

Parti(e)(s)

On peut + inf vou can.... On peut faire - you can do On peut voir - you can see

Adjectives C'était comment? What was it like?

good

C'était ... It was ... J'ai trouvé ça ... I found it ...

TIF - selon moi... selon mon copain.. je dirais que

bizarre weird cool cool cher expensive effrayant scary

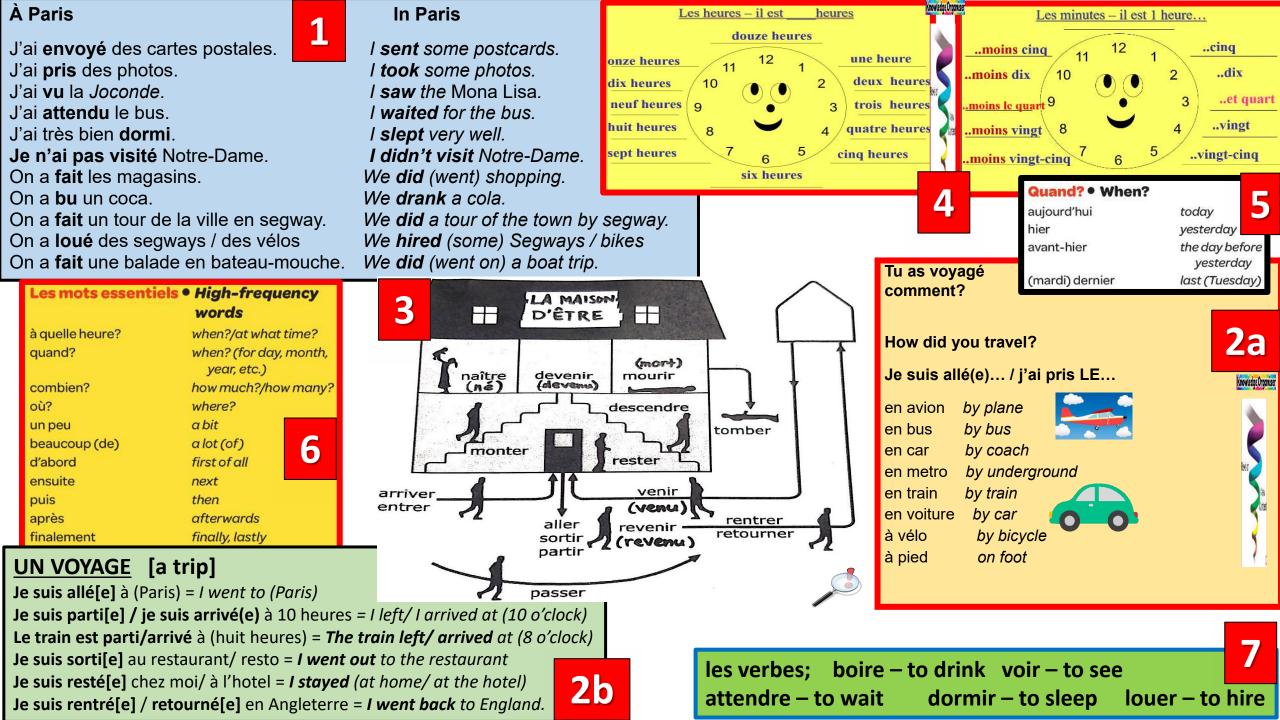
ennuveux boring

bien

fabuleux wonderful/fantastic

génial great

horrible horrible/terrible


intéressant interesting funny/a laugh marrant

rubbish nul slow lent

plein d'action full of action

Ce n'était pas mal. It wasn't bad.

> Il y avait un hotel cher La ville était grande Les monuments étaient intéressants

MIT L AND WILLIAM OF BANISON

VICA Trancla

- 1. Il v a there is / are
- 2. c'est it is ça sera it will be
- 3. sont (they)are seront they will be
- 4. a has
- 5. ont are

Present tense: regular verbs

PRESENT	-er verbs	-ir verbs	-re verbs
je / j'	habit-e	-is	-S
tu	habit-es	-is	-S
II/elle/on	habit-e	-it	-
Nous	habit-ons	-issons	-ons
Vous (pl)	habit-ez	-issez	-ez
Ils or elles	habit-ent	-issent	-ent Risio

How to form the future tense with ALLER... 4 2 3

 You will nee 	ed to remember one easy formul	a:
1	2	3
subject +	present tense of aller +	infinitive
Je	vais	manger
Tu	vas	jouer
il / elle / on	va	faire
Nous	allons	regarder
Vous	allez	finir
ils/elles	vont	aller

Opinions & Pronouns je trouve que

CA OR CELA me fascine OR me plaît OR m'intéresse OR m'amuse OR me rend content[e]

CELA or ça m'énerve

CELA or ca m'ennuie

CELA/ ça me fâche [angers me]

Connectives / frequencies

alors /donc so, therefore car / parce que because dernier/dernière last beaucoup (de) a lot (of)

d'abord first of all ensuite next après afterwards

finalement/enfin finally

auiourd'hui today

yesterday [eve./mornina] hier [soir/matin] avant-hier the day before yesterday last (Tuesday)

(mardi) dernier

Future time indicators

je pense que

je crois que

je dirais que

à mon avis

- **selon** moi =

according to me

- selon mon copain

- selon mes

parents

demain = Le lendemain = ce week-end= le week-end prochain= l'année prochaine= l'été prochain=

BRAGS Adjectives

Beauty:

1 beau: handsome / beautiful

belle: beautiful joli[e]: pretty

Ranks:

1 premier[e]: first 2 deuxième: second

Age:

P

1 jeune: young 2 neuf[ve]: brand new

3 viel, vieux, vielle: old

4 nouvel, nouveau, nouvelle: new

Goodness

1 gentil[e]: kind 2 bon[ne]: good 3 mauvais[e]: bad 3 méchant[e]: naughty

Size

1 petit[e]: small 2 grand[e]: tall **3** gros[sse]: fat 4 énorme: huge

Mon jardin est PLUS petit QUE ton jardin/ or le tien (yours).

Ma maison est **BIEN PLUS** grande que ta maison/ or la tienne (yours f).

Les monuments **ÉTAIENT** beaux.(were).

Complexity - comparisons

PLUS petit[e] QUE: smallER THAN

MOINS beau QUE: LESS handsome THAN

LE PLUS jeune : THE youngEST LA MOINS gentille: THE LESS kind

LES PLUS/ MOINS...: THE MOST/ THE LEAST

Les questions? Questions? when? quand? who with / with whom? avec qui? comment? how? à quelle heure? at what time? où? where? combien de temps? how long? Qu'est-ce que...? what? did ...? is...? Est-ce que ...?

Des questions touristiques

C'est où, le musée? C'est ouvert quand? C'est ouvert à quelle heure? C'est combien, l'entrée? Est-ce qu'il y a ... une boutique de souvenirs?

Tourist questions

Where is the museum? When is it open? (day or date) At what time is it open? How much does it cost to get in? Is there ... a souvenir shop?

Some adjectives

TIF - Qui a volé la Joconde?

Tu as visité le Louvre quand?

Tu es allé(e) avec qui?

Tu es allé(e) comment?

Tu es arrivé(e)/parti(e) à quelle heure?

Après, tu es allé(e) où?

Tu es resté(e) combien de temps?

Qu'est-ce que tu as fait?

Est-ce que tu as volé la Joconde?

Who stole the Mona Lisa? 3

When did you visit the Louvre?

Who did you go with?

How did you get there?

At what time did you arrive/ leave?

Afterwards, where did you go?

How long did you stay?

What did you do?

7

Did you steal the Mona Lisa?

les verbes utiles;

aller – to go venir – to come

partir – to leave rester – to stay

voler – to steal

porter – to wear

Les vêtements • Clothes

Normalement, je porte ... Normally, I wear ...

des baskets trainers boots des bottes des chaussures shoes une chemise a shirt a hat un chapeau

un jean

un pull

une jupe

un pantalon

un tee-shirt

une veste

un sweat à capuche

jeans a skirt

cet été

trousers a jumper

a hoodie a T-shirt a jacket

Au futur • In the future

What are you going to Qu'est-ce que tu vas do/wear? faire/porter? ce weekend

this weekend this summer

Le style • Style

J'ai un style plutôt ... My style is rather ... classique classic décontracté relaxed skateur skater sportif sporty C'est ... It's ... moche ugly horrible horrible cool cool chic chic

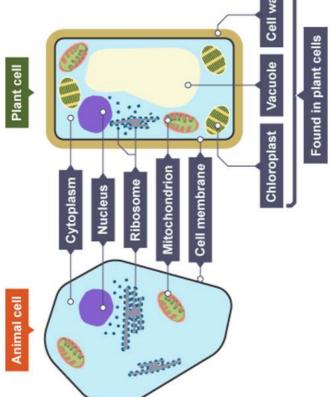
cool/sympa

Des adjectifs

c'était/ce n'était pas it was/ it wasn't J'ai trouvé ça / [très] bien I found it/ [very] good bizzare/étrange odd/strange cool/ nice cher / couteux expensive effrayant/épouvantable scary/frightening ennuyeux/barbant boring fabuleux / formidable fabulous génial / chouette great intéressant interesting marrant / drôle / rigolo funny 12. nul / pas mal rubbish/ not bad

Science Knowledge Organiser

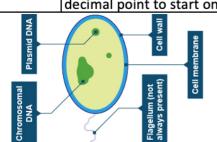
B1: Biology key concepts


Lesson sequence

- 1. Microscopes
- 2. Plant and animal cells
- 3. Measuring cells
- 4. Core practical: using microscopes
- 5. Specialised cells
- 6. Bacterial cells
- 7. Digestive enzymes
- 8. How enzymes work
- 9. Factors affecting enzymes
- 10. Core practical: enzymes and pH
- 11. Cell transport
- 12. Core practical: osmosis in potatoes

	1. Microscopes	
*Magnification The number of times bigger		
	something appears under a	
	microscope.	
*Eyepiece lens	The lens on a microscope that	
ea .	you look through.	
*Objective	The lens at the bottom of a	
lens	microscope. There are normally	
	three you can choose from.	
*Total	Eyepiece lens x objective lens.	
magnification		
**Resolution	The smallest distance between	
	two points so that they can still	
	be seen as two separate points.	
**Stains	Dyes added to microscope slides	
	to show the details more	
	clearly.	
**Milli	Thousandth, 1x10-3 (a millimetre	
	is a thousandth of a metre).	
**Micro	Millionth, 1x10 ⁻⁶ (a micrometre	
9	is a millionth of a metre).	
**Nano	Billionth, 1x10-9 (a nanometre is	
	a billionth of a metre).	
**Pico	Trillionth, 1x10 ⁻¹² (a picometre is	
	a trillionth of a metre).	

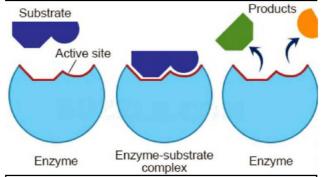
2. F	lant and animal cells
*Cell	The basic structural unit of all living things (the building blocks of life).
*Parts of an	Cell membrane, cytoplasm,
animal cell	nucleus, ribosomes,
*Parts of a	Cell membrane, cytoplasm,
plant cell	nucleus, ribosomes,
	mitochondria, cell wall,
	permanent vacuole,
	chloroplasts.
*Cell	Controls what enters and leaves
membrane	the cell.
*Cytoplasm	A jelly-like substance where
E 10 10 E	chemical reactions take place.
*Nucleus	Contains DNA and controls the cell.
*Ribosome	Produces proteins.
*Mitochondria	norman Maria
	respiration.
*Cell wall	Protects and supports the cell,
	made of cellulose.
*Permanent	Stores sap and helps to support
vacuole	the cell.
*Chloroplast	Where photosynthesis happens,
ė	contains chlorophyll.


	3. Measuring cells
*Micrograph	A picture produced by a
250 8	microscope.
*Light	A microscope that uses light, can
microscope	magnify up to 1500 times.
**Electron	A microscope that uses electrons
microscope	to produce an image, can magnify
	up to 1,000,000 times.
**Actual	Actual size = measured size /
size of a cell	magnification
**Convert	Micrometres (μm) = millimetres
mm to µm	(mm) x 1000

4. Core p	4. Core practical – using microscopes (CP1)	
*CP1 – key question	What do cells look like under a light microscope?	
*CP1 – Prepare the slide	Collect the cells you are studying and place them on the slide. Add a drop of stain and cover with a cover slip.	
*CP1 – Select lens	Choose between the 4x, 10x and 40x objective lenses.	

*CP1 -	Place slide on microscope stage,
Place slide	adjust the coarse focus until the
in	lens is just touching the slide.
microscope	8000 0040
*CP1 -	Looking through the eyepiece,
Rough	slowly adjust the coarse focus until
focus	you see a rough image.
*CP1 – Fine	Looking through the eyepiece,
focus	slowly adjust the fine focus until
	you see a sharply focussed image.
*CP1 -	Draw what you see, label any cell
Record the	parts you can recognise and repeat
image	with different objective lenses.
*CP1 -	As you increase the magnification of
Results	the objective lens, the cells appear
	larger and more detailed.

1/	larger and more actuned.		
	5. Specialised cells		
**Small	Job: To absorb small food molecules		
intestine	produced during digestion.		
cell	Adaptations: Tiny folds called		
	microvilli that increase their surface		
s	area.		
**Sperm	Job: Fertilise an egg and deliver male		
cell	DNA.		
	Adaptations: A tail to swim,		
	mitochondria to give energy for		
	swimming, an acrosome to break		
	through the egg's jelly coat, haploid		
	nucleus with only half the total DNA.		
**Egg cell	Job: To be fertilised by a sperm and		
	then develop into an embryo.		
	Adaptations: Jelly coat to protect the		
	cell, many mitochondria and		
	nutrients to provide energy for		
	growth, haploid nucleus with only		
	half the total DNA.		
**Ciliated	Job: To clear mucus out of your lungs		
epithelial	(and other internal surfaces).		
cell	Adaptations: Small hairs on the		
	surface – called cilia – which wave to		
	sweep mucus along.		


≘,
NA,
ing
ing
ı
10-
s'
i

	/	
	7. Digestive enzymes	
*Digestion	Breaking large food molecules	
	down into ones small enough to	
	absorbed by the small intestine.	
*Catalyst	A substance that speeds up a	
	chemical reaction without being	
	used up.	
*Enzyme	A protein that works as a catalyst	
	to speed up the reactions in our	
	cells.	
*Digestive	Enzymes that break large food	
enzymes	molecules down into smaller ones.	

**Amylase	Where found: saliva, small	
	intestine	
	What it does: breaks down starch	
	into simple sugars such as maltose	
**Lipase	Where found: small intestine	
	What it does: breaks down fats	
	into fatty acids and glycerol	
**Protease	Where found: stomach (pepsin),	
	small intestine (trypsin)	
	What it does: breaks down	
	proteins into amino acids	

8. How enzymes work	
*Substrate	The chemical(s) that an enzyme
	works on.
*Active site	An area of an enzyme with the
	same shape as the substrate.
**Lock and	The substrate moves into the
key	active site and reacts to form the
mechanism	products. The products leave the
	active site so another substrate
	can then enter and so on.
**Specificity	Each enzyme can only work on one
	substrate because the shape of the
	active site has to match.
*Denature	When the shape of the active site
	changes shape so the enzyme
	stops working.

9. Factor affecting enzymes	
*Optimum	The temperature when an
temperature	enzyme works fastest (about 37°
	for human enzymes).
**Changing	Increasing to optimum: rate
the	increases because particles move
temperature	faster
	Increasing past optimum: rate
	decreases as enzyme denatures

*Optimum	The pH when enzymes work
рH	fastest (around pH 6-8 for most
	human enzymes)
**Changing	Rate decreases as you move
pН	away from the optimum because
	the enzyme denatures.
**Increasing	At first the rate increases, but
substrate	then it levels out as the enzyme
concentration	is working as fast as possible.

10. Core practical – enzymes and pH (CP2)	
*CP2 – key	How does the rate that amylase
question	works change as you change the
	pH?
*CP2 -	Place starch solution, amylase
Prepare your	solution and pH 7 buffer into
reactants	separate test tubes and warm
	them in a water bath at 40°C
*CP2 -	Place a few drops of iodine
Prepare your	solution into each well of a
dropping tile	spotting tile.
*CP2 – Start	Mix reactants together, start the
the reaction	stop watch and keep the mixture
	warm in the water bath.
*CP2 – Test	Remove a small amount of
for starch	mixture and place in a well on
	the spotting tile.
*CP2 -	Repeat the test until the mixture
Record your	does not go black (no starch).
results	Record the time.
*CP2 – Vary	Repeat with different pH buffers
the pH	from pH 3 to pH 10
*CP2 -	The amylase works fastest
Results	around pH 7 and more slowly at
	pH high or lower than this.

11. Cell transport	
*Concentration	The number of particles in a
	given volume (the strength of
	a solution).
**Concentration	The difference in
gradient	concentration between two
	neighbouring areas.
*Diffusion	The movement of particles
	from high to low
	concentration (down a
	concentration gradient).

*Diffusion	Lungs: oxygen into blood,
	1
examples	carbon dioxide out of blood
	Leaf: carbon dioxide into leaf,
	oxygen out of leaf.
**Partially	A membrane that allows some
permeable	molecules but not others to
membrane	pass through it (like a cell
	membrane).
**Osmosis	The movement of water
	across a partially permeable
	membrane from high
	water/low solute conc to low
	water/high solute conc.
**Osmosis	Water into plant roots, water
examples	in/out of any cells.
*Active	Using energy to move
transport	substances from low to high
	concentration (up a
	concentration gradient).
*Active	Minerals being absorbed into
transport	plant roots.
examples	

12. Core practical – osmosis in potatoes (CP3)	
*CP3 -	Cut six similar pieces of potato,
Prepare	blot them dry and weigh them.
potatoes	
*CP3 – Run	Place each potato piece in a test
the	tube with sucrose (sugar)
experiment	solutions with concentrations
	from 0% to 50%
*CP3 -	Blot each potato piece dry and
Record	re-weigh it.
results	
*CP3 -	% change = (final value – starting
Calculate	value) / starting value x 100
percentage	
mass change	
*CP3 -	Potato in weaker sucrose
Results	solutions gain mass because
	water enters potatoes by
	osmosis, those in stronger
	solutions lose mass as water
	leaves by osmosis.

Science Knowledge Organiser

B2: Cells and control

Lesson sequence

- 1. Mitosis
- 2. Animal growth
- 3. Plant growth
- 4. Stem cells
- 5. Nervous system
- 6. Neurotransmission
- 7. Controlling movement

7. Controlling movement		
	1. Mitosis	
*Cell cycle	The life of a cell comprising	
	interphase and mitosis.	
*Interphase	Preparation for mitosis in which	
	extra cell parts are made and	
	DNA chromosomes are replicated	
	(copied).	
*Mitosis	When one cell divides into two	
	genetically identical daughter	
	cells.	
*(I)PMATC	The stages of mitosis: interphase	
	(not mitosis), prophase,	
	metaphase, anaphase, telophase,	
	cytokinesis.	
**Prophase	The membrane of the nucleus	
	breaks down and spindle fibres	
	start to form.	
**Metaphase	Spindle fibres fully form and	
	chromosomes line up across the	
	middle of the cell.	
**Anaphase	Chromosome copies separate	
	and move to each end of the cell.	
**Telophase	A new membrane forms around	
	each set of chromosomes to form	
	two nuclei.	
**Cytokinesis	The two new cells fully separate.	
*Cancer	When mitosis happens out of	
	control forming large lumps of	
	cells called tumours.	

2. Animal growth	
*Growth	Increase in size due to increased
	numbers of cells.

*Percentile	A measure of the growth of a
	child that compares them to
	other children of the same age.
*90 th	A child is taller than 90% of
percentile	children of the same age.
*50 th	Average for height/mass for the
percentile	age.
*Percentile	Graphs showing how
graphs	height/mass change with age
	with different lines for each
	percentile.
*Cell	When a cell divides by mitosis to
differentiation	produce two different types of
	cell (not two identical ones).
*Specialised	A cell special features designed
cell	for a specific job.
**Importance	To produce all the different
of	types of cell the body needs
differentiation	such as red blood cells, fat cells,
in animals	nerve cells and muscle cells.

iii aiiiiiais	There eems and masere eems.
3. Plant growth	
*Plant growth	Cell division creates more cells,
	elongation makes these cells get
	bigger.
**Meristems	Areas just behind the tips of
	roots and shoots where cell
	division and differentiation
	happens.
**Importance	To produce all the different
of	types of cell a plant needs such
differentiation	as root hair cells and xylem cells.
in plants	
**Calculating	% change = (final value – starting
percentage	value) / starting value x 100
changes	

4. Stem cells	
*Stem cell	A cell that can differentiate when
	it divides, to produce two
	different cells.
**Embryonic	A stem cell that can become any
stem cell	kind of cell. Found in developing
	embryos.
**Adult	A stem cell that can only become
stem cell	a few types of cell. Found in
	animals after birth.

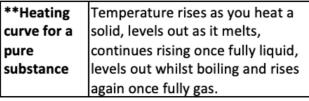
5. Nervous system	
	come from.
cells	used in the person they have
with stem	cancer, stem cells can only be
**Problems	They may potentially cause
	transplant.
	or to grow new organs for
	like type 1 diabetes or leukaemia,
in medicine	replace damaged cells in diseases
	It is hoped they can be used to

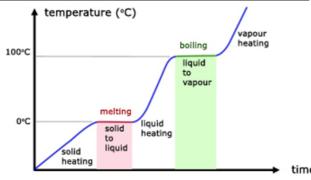
	3. NCI VOUS SYSTEM
*Nervous	All the nerves in your body
system	working together to gather
	information, make decisions and
	control responses.
*Central	The brain and spinal cord – makes
nervous	decisions (aka CNS).
system	
**Peripheral	All your other nerves – gathers
nervous	information from your sense and
system	carries messages from the CNS to
	your muscles.
*Neurone	A nerve cell
*Impulse	Electrical message carried by a
	neuron.
**Cell body	The central part of a nerve cell
	containing its nucleus.
**Dendron	The long parts of a nerve cell
and axon	carrying impulses towards the cell
	body (dendron) and away from it
	(axon)
**Myelin	A fatty layer around the axon and
sheath	dendron that insulates it to
	prevent the impulse from escaping
	and speeds the impulse up.

6. Neurotransmission	
**	The travelling of an impulse
Neurotransmission	along a neuron and into
	another.
**Dendrites	Branches at the beginning
	of a dendron that connect
	to receptor cells or another
	neuron.
**Axon terminals	Branches at the end of an
	axon that connect to a
	muscle or another neuron.

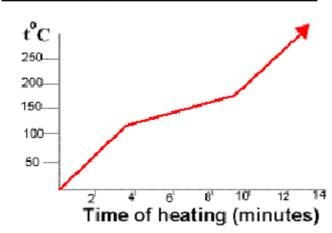
	19
**Synapse	Small gap between two
	neurons where the axon
	terminals of one meet the
	dendrites of another.
**	Chemicals released by axon
Neurotransmitter	terminals that diffuse across
	the synapse to trigger a new
	impulse the dendrite of
	another neuron.
**Sensory neuron	Nerve cell that carries
	impulses from sense organs
	to the CNS. Has a long
	dendron and a long axon.
**Relay neuron	Nerve cell in the CNS that
	makes decisions. Dendrites
	join onto cell body, short
	axon.
**Motor neuron	Nerve cell that carries
	impulses from the CNS to
	muscles. Dendrites join onto
	cell body, long axon.

	cell body, long axon.
7. Controlling movement	
*Stimulus	A piece of information detected by
	the nervous system.
*Receptor	Cells that detect a stimulus.
*Response	The action that the nervous system
	makes happen.
*Effector	The body part that produces the
	response, often a muscle.
**Voluntary	A stimulus is detected by a
movement	receptor, causing an impulse to be
	carried by a sensory neuron to the
	brain. Relay neurones in the brain
	decide what to do and send
	another impulse down a motor
	neuron to the effector (muscle) to
	cause a response.
*Reflexes	Automatic responses that happen
	very quickly without conscious
	thought to keep the body safe.
**Reflex arc	Movement is caused in the same
	way as for voluntary movement,
	except the spinal cord makes the
	decision without needing the brain
	to think.

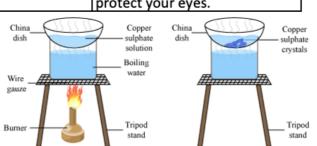

Science Knowledge Organiser


C1 & 2: States of matter and separating substances

Lesson sequence


- 1. States of matter
- 2. Mixtures
- 3. Filtration and crystallisation
- 4. Paper chromatography
- 5. Distillation
- 6. Core practical investigating inks (CP7)
- 7. Drinking water

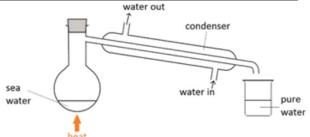
	1. States of matter	
*Particle	The tiny pieces that all matter is made from.	
*Atom	The smallest independent particle. Everything is made of atoms.	
*Molecule	A particle made from two or more atoms bonded together.	
*State of matter	Whether a substance is solid, liquid or gas.	
*Particle model	A theory that uses the idea of particles to explain the differences between solids, liquids and gases.	
*Solid	Particle arrangement: Regular pattern, touching each other. Particle movement: Vibrating around a fixed point.	
*Liquid	Particle arrangement: Random, touching each other. Particle movement: Moving around	
*Gas	Particle arrangement: Random Particle movement: Moving quickly	
*State changes	Solid to liquid = melting Liquid to solid = freezing Liquid to gas = evaporating or boiling	
	Gas to liquid = condensation Solid to gas = sublimation Gas to solid = deposition	

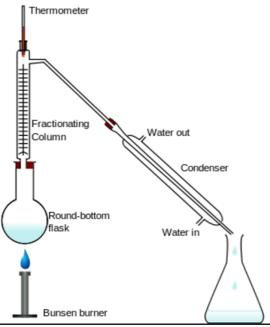


2. Mixtures	
*Element	A substance made from only one
	type of atom.
*Compound	A substance made from two of
	more different elements bonded
	together.
*Mixture	A substance made of two of more
	substances (elements or
	compounds) mixed but not bonded
	together.
**Melting	Mixtures do not melt at a fixed
point of	temperature but melt gradually
mixtures	over a range of temperatures.
**Heating	The flat sections of the heating
curves of	curves of a pure substance are
mixtures	sloped for a mixture.

3. Filtra	ation and crystallisation
*Dissolve When a substance mixes with a	
	liquid by breaking down into
	individual particles (atoms or
	molecules).
*Soluble	When a substance can be
	dissolved by a liquid.
*Insoluble	When a substance can't be
	dissolved by a liquid.
*Filtration	A method of separating a
	mixture of a liquid and an
	insoluble solid by passing it
	through a filter paper.
**Residue	The solid that gets left behind in
	the filter paper.
**Filtrate	The liquid that passes through
	the filter paper.
**How	The filter paper contains many
filtration	tiny holes. The water molecules
works	are small enough to pass
	through the holes, the solid
	particles are too big and get
	trapped.
*Solution	A mixture of a solute dissolved
	in a solvent.
**Solvent	A liquid that has dissolved a
	substance, for example water.
**Solute	A solid that has been dissolved,
	for example salt.
*Crystallisation	A method of collecting the
	dissolved solid from a solution
	by heating it so that the solvent
	evaporates away.
**Risks of	As the solvent boils away, the
crystallisation	hot solution can spit, so you
	should wear safety goggles to
	protect your eyes.

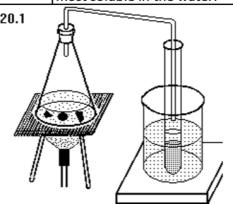
4. Pape	r chromatography
*Paper	A method of separating out
chromatography	mixtures of liquids to show
с с д. ир у	what is in them, by letting
	them travel up a piece of
	chromatography paper.
*Chromatography method	1. Draw pencil line on paper 2. Place sample spot on line 3. Place paper in solvent, with solvent below pencil line. 4. Allow solvent to soak up the paper 5. Stop when solvent near top, and mark how far it
	gets.
**Stationary	The substance the solvent
phase	moves through – usually
	paper (Note: technically it is a thin layer of water from air
	that is bound to the paper
	molecules)
**Mobile phase	The solvent.
**R _f (retardation	R _f = spot distance / solvent
factor)	distance
**Uses of R _f	R _f enables you to identify a substance because for a given solvent and stationary phases, it is unique to each substance.
**Uses of	- To tell between pure and
chromatography	impure substances
	 To identify substances by comparison with known ones To identify substances by calculating R_f.


10


Solvent Front

Separated

Filter Paper Ink Spots Solvent


	5. Distillation
*Distillation	A method used to collect pure
Distillation	liquid from a solution, such as
	getting pure water from
	seawater.
**Condenser	A glass tube surrounded by a
Condenser	glass jacket containing cold tap
	water. Used to condense gases
	back to liquids.
**How	The solution is heated until it is
distillation	hot enough for the solvent to
works	boil. The solvent is then passed
	through a cool condenser
	where it turns back to liquid.
	The solute does not get hot
	enough to evaporate and stays
	where it is.
**Anti-	Jagged grains of glass that are
bumping	added during distillation to
granules	prevent violent boiling.
*Fractional	A type of distillation used to
distillation	separate mixtures of two or
	more liquids.
**How	The liquid with the lowest
fractional	boiling point boils first and can
distillation	be collected, then the next boils
works	and so on.
**Fractionating	A tall glass column used during
column	fractional distillation that gives
	a better separation of the
	liquids by producing a
	temperature gradient.

Bunsen I	burner
6. Core praction	al – investigating inks (CP7)
*CP7 – Aim	To separate inks using
	distillation and
	chromatography.
*CP7 -	Place some ink in a conical
Distillation set	flask with a side arm and
up	delivery tube attached, place
	the flask on a tripod above a
	Bunsen burner. Place a boiling
	tube in a beaker of ice and
	place the delivery tube into
	the boiling tube.
*CP7 – Run the	Light the Bunsen burner and
distillation	allow the ink to boil, stop once
	a few drops of liquid have
	collected.
*CP7 -	Pure water collects in the test
Distillation	tube because it boils and the
results	cold ice condenses the
	vapours back to liquid. The ink
	gets darker because there is
	less water to dilute it.
*CP7 -	1. Draw pencil line on paper
	2. Place ink spot on line
setup	3. Place paper in solvent, with
	solvent below pencil line.
	4. Allow solvent to soak up the
	paper
	5. Stop when solvent near top,
	and mark how far it gets.

*CP7 -	Measure how far each of you
Chromatography	spots has moved from the line
- calculate Rf	and how far the solvent has
	moved. Rf = spot distance /
	sample distance.
*CP7 -	The ink separates into
Chromatography	multiple different spots. The
results	one that moves furthest is
	most soluble in the water.
3.20.1	

	/
	7. Drinking water
*Potable	Water that is safe to drink.
water	
*Desalination	Producing pure water from
	seawater.
**Purifying	The seawater is distilled: heating
seawater	the water to produce water
	vapour and condensing it back to
	liquid. Uses lots of energy.
**Uses of	Pure water has to be used when
pure water	chemists analyse substances to
	fins out what they contain. Tap
	water contains many dissolved
	substances that could interfere
	with this.
**Water	Water is passed through a
treatment in	sedimentation tank, to allow
the UK	sediment to settle out, it is
	passed through a filtration tower
	to remove floating particles,
	chlorine is added to kill bacteria.

C3 & 4: Atoms and the periodic table

Lesson sequence

- 1. Structure of atoms
- 2. Detailed structure of atoms
- 3. Isotopes
- 4. Mendeleev's periodic table
- 5. The modern periodic table
- 6. Electron configuration

	1. Structure of atoms					
*Particle	The tiny pieces that all matter is					
	made from.					
*Atom	The smallest independent particle.					
	Everything is made of atoms.					
**Size of	About 1 x 10 ⁻¹⁰ m in diameter.					
atoms						
**Dalton's	- Tiny hard spheres					
model of	- Can't be broken down					
atoms	- Can't be created or destroyed					
	- Atoms of an element are identical					
	- Different elements have different					
	atoms					
*Subatomic	Smaller particles that atoms are					
particles	made from.					
*Proton	Mass = 1					
	Charge = +1					
	Location = nucleus					
*Neutron	Mass = 1					
	Charge = 0					
	Location = nucleus					
*Electron	Mass = 1/1835 (negligible)					
	Charge = -1					
	Location = shells orbiting nucleus					
*Nucleus	Central part of an atom, 100,000					
	times smaller than the overall atom					

2. Deta	2. Detailed structure of atoms					
**Alpha particle	Small positively charged particle made of two protons and two neutrons.					
**Scattering	When particles bounce back or change direction.					
**Rutherford's experiment	Fired alpha particles at gold leaf, used a phosphor-coated screen to track where they went.					

**Rutherford's	Most alpha particles went
results	through, some scattered
	(changed direction).
**Rutherford's	Scattered particles hit a solid
explanation	nucleus. Most did not hit it,
	therefore nucleus is small
*Atomic	The bottom number on the
number	periodic table, gives the number
	of protons and electrons.
*Atomic mass	The top number on the periodic
	table, gives the total protons
	and neutrons together.
*Number of	The atomic number.
protons	
*Number of	The atomic number.
electrons	
*Number of	Atomic mass minus atomic
neutrons	number.
*Number of	Equal, because each negative
protons and	electron is attracted to a
electrons	positive proton in the nucleus.

3. Isotopes					
**Isotopes	Atoms with the same number of protons but different number of neutrons.				
**Describing isotopes	Mass after the name (e.g. boron- 10) or superscript mass before the symbol (10B).				
*Nuclear fission	Large unstable atoms break into two smaller stable ones.				
**Uses of fission	Nuclear power, nuclear weapons.				
**Relative atomic mass, A _r	The weighted average of the masses of all of the isotopes of an element.				
***Isotopic abundance	The percentage of an element that is made of a particular isotope.				
***Calculating A _r	- Multiply each mass by the decimal % - Add these up Note: (decimal % = %/100)				

4. Mendeleev's periodic table				
*Dmitri	Russian chemist, developed the			
Mendeleev	periodic table.			

*Mendeleev's	Ordered by increasing A _r , some
periodic table	elements switched according to
	their properties.
*Chemical	Includes reaction with acid and
properties	formula of oxide.
*Physical	Includes melting point and
properties	density.
**Gaps in	Mendeleev left gaps where no
Mendeleev's	known element fitted and
periodic table	predicted these would be filled
	with newly discovered elements.
**Eka-	An element that Mendeleev
aluminium	thought would fill a gap. He
	predicted its properties, which
	matched gallium when
	discovered.

5. T	5. The modern periodic table						
*Noble	Gases that do not react: He, Ne,						
gases	Ar, Kr.						
**Moseley's	Fired electrons at samples of						
experiment	elements and measured X-rays						
	produced.						
**Moseley's	Energy of x-rays produced						
results	proportional to the positive charge						
	of the element.						
**Conc.	The atomic number must be the						
from	number of protons in the atoms.						
Moseley's							
work							

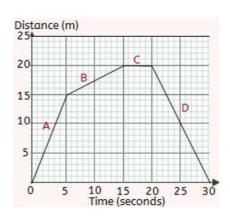
	Elements (like Ar and K) that are
reversals	not in order of increasing mass.
**Explaining	It means elements should be order
pair	elements by increasing atomic
reversals	number instead.

6.	Electron configuration
*Shells	Electrons orbit atoms in shells.
*First shell	Holds up to two electrons.
*Second shell	Holds up to eight electrons.
*Third shell	Holds up to eight electrons.
*Number of electrons	Given by the atomic number.
*Filling shells	Fill shells from the first shell out. Move up a shell when current one is full.
*Electron configuration	The number of electrons in each shell (e.g. Al is 2.8.3).
*Outer shell	The last shell with any electrons in it.
**Groups	Columns in the periodic table, tell you the number of electrons in the outer shell.
**Periods	Rows in the periodic table, tell you the number of electron shells.

1	2			Key			1 H hydrogen					3	4	5	6	7	0 4 He
7 Li lithium 3	9 Be beryllum 4		ato	ve atomic omic sym	bol							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygan 8	19 F fluorine 9	20 Ne noon 10
23 Na sodium 11	24 Mg magnesium 12											27 Al aluminium 13	28 Si silcon 14	31 P phosphorus 15	32 S sufter 16	35.5 CI chlorine 17	40 Ar argan 18
39 K potassium 19	40 Ca colclum 20	45 Sc scondium 21	48 Ti titanium 22	51 V variadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe ion 26	59 Co cobalt 27	59 Ni rideal 28	63.5 Cu copper 29	65 Zn zino 30	70 Ga gollum 31	73 Ge germenium 32	75 As arsenio 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
85 Rb natidum 37	88 Sr strentum 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh modum 45	106 Pd palkedium 46	108 Ag siher 47	112 Cd csdmium 48	115 In indium 49	119 Sn in 50	122 Sb antimorry 51	128 Te tellurium 52	127 iodine 53	131 Xe xenon 54
133 Cs caesium 55	137 Ba berlum 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantaium 73	184 W tungsten 74	186 Re merium 75	190 Os osmium 76	192 Ir irdium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallum 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actnium 89	[261] Rf nutherfordum 104	[262] Db dibnum 105	[266] Sg seatorgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt metherium 109	[271] Ds damstadium 110	[272] Rg roemgenium 111	Elem	nents with ato		s 112-116 ha		orted but not	fully

P1: Motion

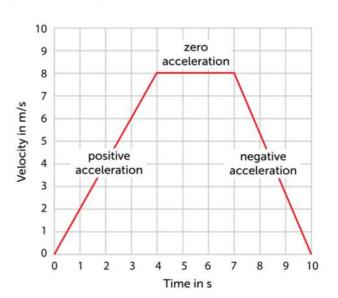
Lesson sequence


- 1. Vectors and scalars
- 2. Speed-time graphs
- 3. Distance-time graphs
- Acceleration
- 5. Velocity-time graphs

	1. Vectors and scalars
Magnitude	A scientific word for size.
Scalar	A quantity with magnitude (but no
quantity	direction).
Scalar	Distance – 10 m
examples	Speed – 25 m/s
	Mass – <u>e.g.</u> 50 kg
Vector	A quantity with magnitude and
quantity	direction.
Vector	Displacement – 10 m north
examples	Velocity – 25 m/s east
	Force – 30 N left
	Acceleration – 3 m/s ² south
	Momentum – 400 N m/s right
Vector	Vectors can be represented by
arrows	arrows, with the length of the
	arrow representing the
	magnitude.
Displacement	The distance and direction
	travelled in a straight line.
Velocity	Your speed in a certain direction.

	2. Speed					
Units of Metres per second, m/s. speed						
Speed – word equation	Speed = distance / time					
	Speed = m/s					
	Distance = m					
	Time = s					
Speed – symbol	v = x/t					
equation	v = speed					
	x = distance					
	t = time					
Instantaneous	Speed at a particular point in					
speed	time.					

Average	The average speed across the
speed	whole of a journey, calculate from
	v = x/t.
Calculating	Distance = average speed x time
distance	x = v x t
travelled -	
word	Distance = m
equation	Average speed = m/s
	Time = s
Measuring	Measure the distance between
speed	two points and time how long an
	object takes to pass, then
	calculate using $v = x/t$.
Light gates	Equipment that can be used for
1000 Sec. 1000	measuring time accurately with
	fast-moving objects to help find
	their speed.
Some typical	Walking – 1-2 m/s
speeds	Running – 3-8 m/s
	Cycling – 5-20 m/s
	Driving – 10-40 m/s
	Flying – 250 m/s

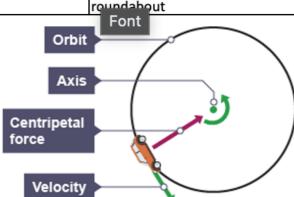

3. D	istance-time graphs
Distance-time graph	A graph describing how your distance from the start changes over the course of a journey. Time is on the x-axis and distance on the y-axis.
Distance-time graphs – stationary	Horizontal line
Distance-time graphs – constant speed	Forwards – line sloping up Backwards – line sloping down
Distance-time graphs – line gradient	Steeper line = faster
Calculating speed from a distance-time	Speed = change in distance / change in time Speed = change in y / change
graph	in x

4. Acceleration

Acceleration	Changing velocity
You	- You change speed
accelerate	- You change direction
when	
Units of	Metres per second squared, m/s ²
acceleration	≈ 350 1
Positive and	Positive acceleration = speeding up
negative	Negative acceleration = slowing
acceleration	down
Deceleration	Slowing down, negative
	acceleration.
Acceleration	Acceleration = change in speed /
– word	time
equation	
	Acceleration = m/s ²
	Change in speed = m/s
1	Time = s
Acceleration	a = (v – u)/ t
– symbol	19
equation	a = acceleration
	v = final speed
	u = initial speed
	t = time
Linking	Use the equation:
	$x = (v^2 - u^2) / 2a$
and Velocity	
travelled	x = Velocity travelled
	a = acceleration
	v = final speed
	u = initial speed
Acceleration	10 m/s ²
during free	
fall	

	5. Velocity-time graphs
Velocity-	A graph showing how your velocity
time graph	(speed) changes over time. Time is
	on the <u>x-axis</u> , velocity is on the y-
	axis.
Velocity-	Horizontal line
time graphs	
constant	
speed	
Velocity-	Speeding up – line sloping up
time graphs	
=	Slowing down – line sloping down
acceleration	
Velocity-	Horizontal line on the x-axis
time graphs	
- Stationary	
Velocity-	Steeper line = greater acceleration
time graphs – line	
gradient Calculating	Acceleration = change in velocity/
	change in time
on a	change in time
velocity-	Acceleration = change in y / change
time graph	in x
Calculating	Distance = area under the graph.
distance	
travelled	Divide the graph into rectangles
from a	and triangles, find the area of each
velocity-	and add them together.
time graph	•

P2: Forces and motion


Lesson sequence

- 1. Resultant forces
- 2. Newton's first law
- 3. Mass and weight
- 4. Newton's second law
- Core practical investigating acceleration (CP12)
- 6. Newton's third law
- 7. Momentum (HT)
- 8. Stopping distances
- 9. Car safety

	1. Resultant forces
*Scalar	A quantity with magnitude (but no
quantity	direction).
*Vector	A quantity with magnitude and
quantity	direction.
*Force	Arrows can be used to represent
arrows	forces:
	- Direction = direction of force
	- Length = size of force
**Resultant	The force left over when forces
force	acting in opposite directions are
	cancelled out.
**Calculating	Subtract the total force in one
resultant	direction from the total force in
force	the other direction.
*Balanced	When the resultant force is zero
forces	(because forces acting in opposite
	directions are the same size).
*Unbalanced	When the resultant force is non-
forces	zero (because there is more force
	in one direction than another).

2. Newton's first law	
*Newton's first law of	An object will move at the same speed and direction unless it
motion	experiences a resultant force.
**The effect	Resultant forces cause
of resultant	acceleration: speeding up,
forces	slowing down or changing
	direction

**Effect of	Forces make you start moving,
forces on	stop moving or change direction,
motion	they are not needed to keep you moving!
***Circular motion	Moving in a circle is a type of acceleration because you are changing velocity (your direction changes even if your speed does not).
***Centripetal	A force acting towards the centre
force	of a circle that enables objects to
	move in a circle.
***Sources of	Gravity – keeps the Earth orbiting
centripetal	the sun
force	Tension – lets a bucket swing in
	circles on a rope
	Friction – keeps cars turn round a
	roundahout
	Font

3	. Mass and weight
*Mass	The quantity of matter in an object is made of. Units =
	kilograms, kg.
*Weight	A force caused by gravity pulling downward on an object. Units = newtons, N.
*Force meter	An instrument for measuring forces. They usually involve a spring that stretched more the more the force.
**Gravitational	The strength of gravity, which is
field strength	different on different planets.
	Units = newtons per g=kilogram, N/kg.
**Gravitational	10 N/kg
field strength	
on Earth	

**Calculating weight	Weight = mass x gravitational field strength
	W = m x g
	Weight = N
	Mass = kg
	Gravitational field strength =
	N/kg
**Air	A force greater by the air
resistance	pushing against you as you
	move. Faster movement ->
	greater air resistance.
***Motion	Accelerate until the air
whilst falling	resistance is equal to the weight;
	now there is no resultant force
	so speed stays constant.

4.	Newton's second law
*Newton's second law of	Force = mass x acceleration
motion	
**Acceleration	- The force is greater
is greater	- The mass is smaller
when	
*Calculating	Force = mass x acceleration
forces	F = m x a
	Force = N
	Mass = kg
	Acceleration = m/s ²
*Calculating	Acceleration = mass / force
acceleration	a = F / m
	,
	Force = N
	Mass = kg
	Acceleration = m/s ²
***Inertial	The mass calculated by measuring
mass	the acceleration produced by
	force, using the equation 'm = F /
	a'
***The point	Inertial mass is the same as mass
of inertial	measured with a mass balance,
mass	but it gives us a way to measure
	mass where there is no gravity,

such as in space.

5. Core practical – investigating acceleration (CP12)	
*CP12 - Aim	To investigate how changing force changes acceleration.
*CP12 -	A trolley on a ramp with 90 g
Setup	masses. 10 g mass hanger attached
	to trolley via a string over a pulley.
*CP12 -	Release the trolley, use light gates to
Data	measure the acceleration.
collection	
*CP12 -	Move 10 g of mass from the trolley
Variations	to the mass hanger each time.
*CP12 -	The force: each 10 g mass = 0.1 N
Independent	force
variable	
*CP12 -	Ore mass → more force → greater
Results	acceleration.

6. Newton's third law		
*Newton's	For every action force there is an equal	
third law	but opposite reaction force.	
*Action	The force you push or pull with.	
force		
*Reaction	A force of the same size but opposite	
force	direction to an action force.	
*Action-	If, A applies an action force to B, B	
reaction	applies a reaction force of same size	
forces	and opposite direction to A.	
**Action-	Similarities: same sizes, opposite	
reaction	directions	
vs		
balanced	Differences: balanced forces act on	
forces	same object, action-reaction act on	
	different objects	
***Action-	E.g. kicking a ball: the foot pushes the	
reaction	ball, the ball pushes back on the foot.	
forces -		
collisions		

7. Momentum (HT)	
*Momentum	The tendency of an object to
	keep moving.

*Calculating	Momentum = mass x velocity
momentum	field strength
	p = m x v
	Momentum = kg m/s
	Mass = kg
	velocity = N/kg
Momentum and	Force = change in momentum /
force	time
calculations	F = (mv – mu)/t
	Force = N
	Mass = kg
	Velocity = m/s
	Time = s
***Conservation	Total momentum before and
of momentum	after a collision is the same.

**Three car	Crumple zones, (stretchy) seat belts,
safety	air bags
features	
***Collision	Greater momentum change →
forces	greater force
**Calculating	Force = change in momentum / time
collision	F = (mv – mu)/t
forces	
	Force = N
	Mass = kg
	Velocity = m/s
	Time = s

8. Stopping distances	
*Stopping distance	The distance travelled from when a hazard is seen to when you fully
	stop.
*Thinking	The distance travelled from when a
distance	hazard is seen to when you brake.
*Braking	The distance travelled from when
distance	you brake to when you fully stop.
**Calculating	Stopping distance = thinking
stopping	distance + braking distance
distance	
**Thinking	Slower reactions = greater thinking
distance and	distance
reaction	
time	
**Thinking	Higher speed, tiredness, illness,
distance	drugs, distractions, old age
increased	
by	
**Braking	Higher speed, poor brakes, poor
distance	tyres, wet/icy/gravelly road,
increased by	downhill, heavier load

9. Crash hazards	
**Crash danger	Crashes involve large decelerations, creating large forces which can
uanger	injure you.
**Car safety	Increase the time a collision takes,
features	reducing deceleration and forces.

B3: Genetics

Lesson sequence

- 1. Meiosis
- 2. DNA
- 3. DNA extraction
- 4. Alleles
- 5. Inheritance
- 6. Gene mutation
- 7. Variation

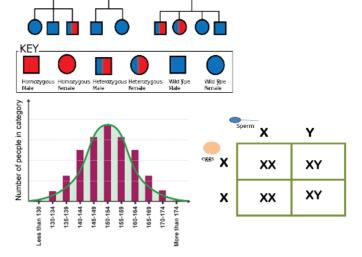
	1. Meiosis	
*Gametes	Egg cell and sperm cell	
*Fertilisation	Sperm cell fuses with egg cell and	
	nuclei combine	
*Zygote	Single cell formed by fertilisation	
*Gene	Length of DNA coding for a	
	protein. Controls your	
	characteristics	
*Genome	All the DNA and genes in an	
	organism	
*Protein	Polymer made from amino acids	
**Polymer	Long molecule made by chaining	
	together many shorter ones	
*Diploid	A cell with 23 pairs of	
	chromosomes (46 in total)	
*Haploid	A cell with 23 single chromosomes	
*Meiosis	Cell division that makes gametes	
**Meiosis	DNA replicates, cell divides into 2	
stages	diploid cells, these divide into 4	
	haploid daughters.	
**Why	Chromosomes in a pair are slightly	
gametes are	different. Different gametes get	
different	different combinations of	
	chromosomes.	

2. DNA	
	Large DNA molecule made into a small package by tightly coiling DNA around a protein.
*DNA structure	Two strands, double helix, complementary base pairs, sugar-phosphate backbone

*DNA bases	Adenine, A; thymine, T;
	cytosine, C; guanine, G
*Complementary	A <u>pairs</u> with T
base pairs	C pairs with G
**Hydrogen	Weak force holding the two
bonds	strands of DNA together.
**DNA analysis	Uses small differences in DNA
	to determine family
	relationships or link people
	to crimes.

3. DN	IA extraction		l
*DNA extraction:	Salt makes DNA clump		ľ
Mix water, salt and	together, detergent breaks		L
detergent.	down cell membranes to		Γ
	release DNA		Ī
*DNA extraction:	Increases the surface area		ľ
Mash fruit/veg and			ſ
add the solution			ŀ
*DNA extraction:	Heat makes it react quicker		L
Leave in water bath			
at 60°C			ŀ
*DNA extraction:	To remove unwanted		L
Filter the mixture	lumps		
and collect filtrate			١
*DNA extraction:	It's easier to work with a		Ŀ
Measure out 10	small amount		
cm³ of filtrate			L
*DNA extraction:	Protease breaks down		
Add two drops of	proteins around the DNA		
protease solution		4	L
*DNA extraction:	DNA is insoluble in ethanol	.1,	ſ
Gently add ice-cold	so precipitates		ŀ
ethanol			ŀ
*DNA extraction:	So white DNA layer forms		
Leave for several			
minutes			l

4. Alleles	
*Allele	Different version of the same gene. We have two alleles of each gene.
**Homozygous	We have two copies of the same allele
**Heterozygous	We have two different copies of an allele

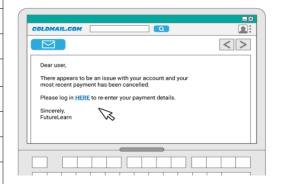

*Dominant	One copy needed for
allele	characteristic to show. Written
	as a capital.
*Recessive	Two copies for the
allele	characteristic to show. Written
	as lowercase.
*Genotype	The combination of alleles in
	an organism.
*Phenotype	The characteristics produced
	by the alleles.
**Genetic	Shows the likelihood of
diagram	offspring produced by parents
	with certain genotypes

	5. Inheritance	
*Sex	Female: XX	
chromosomes	Males: XY	
*Inheriting	All eggs are X, 50% of sperm are	
sex	X and 50% are Y, so 50% of	
	zygotes are XX and 50% are XY	
*Punnett	Uses the genotypes of male and	
squares	female gametes to predict the	
	genotypes of the offspring.	
**Probability	Punnett squares tell you the	
and Punnett	likelihood of certain offspring,	
squares	not what will actually happen.	
**Cystic	Illness caused by <u>a</u> inheriting two	
fibrosis	copies of a faulty recessive allele.	
**Family	Chart showing how genotypes	
pedigree	are inherited down through a	
chart	family.	

6. Gene mutation		
*Mutation	*Mutation A change to the bases in a gene.	
**Effect of	Change the structure of a protein	
mutations	ons and how it works. Sometimes	
	harmless, normally harmful, very rarely beneficial	
*Cause of	Mistakes copying DNA during cell	
mutations	division, DNA damage from	
	chemicals or radiation	
*Inheriting	Only if they occur in gametes (egg	
mutations	and sperm)	
*Human	(HGP) Project involving many	
Genome	scientists from many countries to	
Project	find the order of bases in human	
	DNA	

	To tailor drugs to genes, to design better drugs
useful?	
**Genetic	HGP found 99% of DNA in all people
differences	

7. Variation		
*Variation	Natural differences between	
	members of a species that	
	affect the chance of survival.	
*Genetic	Variation caused by genes	
variation		
*Environmental	Caused by interaction with the	
variation	surroundings – such as food,	
	climate etc.	
*Causes of most	A combination of genes and	
variation	the environment.	
**Acquired	Changes caused by the	
characteristics	environment during your	
	lifetime, such as losing a leg	
**Continuous	Can be anywhere within a	
variation	range, such as <u>height</u>	
	following a normal	
	distribution.	
**Discontinuous	Can be only one of a few	
variation	possibilities, such as blood	
	type: A, B, AB, O	
**Normal	Bell-shaped curve with more	
distribution	in the middle and fewer either	
	side.	



CYBERSECURITY

Key words		
adware	adverts for products a user may be interested in, based on internet history	
authentication	verifying the identity of a user or process	
biometrics	'password' created from the user fingerprint, iris, retina, facial, voice	
blagging	inventing a scenario to obtaining personal information	
САРТСНА	Completely Automated Public Turing Test To Tell Computers and Humans Apart	
DoS/DDoS	Denial of Service attack/Distributed Denial of Service	
encryption	mathematically converts data into a form that is unreadable without a key	
firewall	checks incoming and outgoing network traffic for threats	
hacking	gaining unauthorised access to or control of a computer system'	
malware	a variety of forms of hostile or intrusive software	
penetration testing	testing a network/program for vulnerabilities	
pharming	redirecting web traffic to fake websites designed to gain personal information	
phishing	messages designed to steal personal details/money/identity	
ransomware	virus which locks a computer and encrypts files until a "ransom" is paid	
script kiddies	hackers with no technical hacking knowledge using downloaded software	
shouldering	directly observing someone enter personal details e.g. PIN number, password.	
social engineering	manipulating people so they give up personal/confidential information	
spyware	gathers information about a person or organisation without their knowledge	
trojans	masquerades as having a legitimate purpose but actually has malicious intent	
viruses	self-replicating software attached to another program/file	
worms	Replicate and spread through the network	

Cybersecurity looking at common attacks and methods to protect ourselves and our networks against these attacks.

Data: raw facts and figures

Information: data that has been processed and has

context

Data Protection Act 2018:

All organisations and people using and storing personal data must abide by the DPA principles . It states how data should be stored/accessed and what rights a data subject has for the protection of their data.

Computer Misuse Act 1990:It is an offence to

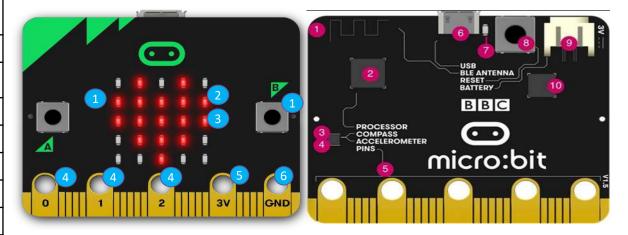
have unauthorised access to computer material

have unauthorised access with intent to commit or facilitate the commission of further offences

commit unauthorised acts with intent to impair, or with recklessness as to impairing, the operation of a computer.

Hacking in the context of cyber security is gaining **unauthorised** access to or control of a computer system .

Unethical versus ethical hacking
Penetration testers (pen testers) are people who are
paid to legally hack into computer systems with
the sole purpose of helping a company identify
weaknesses in their system.



MICRO-BITS

Keywords	
Micro:bit	A small computer with a microprocessor that can execute a single program at a time.
Buttons	Capture user input and makes things happen
LED display (Light Emitting Diodes)	5x5 LED matrix output used to display information.
Light Sensor	Input, measures how much light is falling on the micro: bit.
GPIO (General-Purpose Input Output) pins	Input and output connects headphone, sense touch and add other electronics.
Temperature sensor	Input measures how warm the environment is.
Compass	Input, finds magnetic north or measures magnetic field strength
Accelerometer	Input detects gestures and measures movement in 3 dimensions.
Radio	Communication input and output allows communication with other devices
MicroPython	The programming language
Algorithm	A set of instructions to be followed to complete a given task or solve a problem.
Program	A sequence of instructions used by a computer.
Sequence	The order which the computer will run code in, one line at a time.
Selection	A decision made by a computer, choosing what code should be run only when certain conditions are met.
Condition	Checking to see whether a statement or sum is true or false.
Iteration	When a section of code is repeated several times – also known as looping.
Variable	Something which can be changed in a computer. Made up of a name and some data to be saved.

The micro: bit is a pocket-sized computer that introduces you to how software and hardware work together. It has an LED light display, buttons, sensors and many input/output features that you can program and physically interact with.

- 1. Buttons: input
- 2. LED display: output
- 3. Light sensor: input
- 4. Pins GPIO: input/output
- 5. Pin 3 volt power
- 6. Pin Ground

- L. Radio & Bluetooth antenna
- 2. Processor & temperature sensor
- 3. Compass
- 4. Accelerometer
- 5. Pins
- 6. Micro USB socket
- 7. Single LED
- 8. Reset button
- 9. Battery socket
- 10. USB interface chip

IT AND THE WORLD OF WORK

Keywords		
Local software	 Needs time to be installed on all computers Licences may be bought for staff who do not use all of the available software in the package Has to be maintained and updated by maintenance people Users must be using the computer on which the software is installed 	
Cloud storage	 Files are stored on remote servers When you want to access the file or media, they are downloaded or streamed to your device Files or media can also be uploaded to the cloud for storage (useful for backups) Files or media can be synchronised on more than one device so that each device has the same content The amount of storage can be increased or decreased as needed (it's scaleable) 	
Ad hoc network	Created with a temporary device-to-device connection without the need for a connection to a Wi-Fi access point or router	
VPN	A VPN will route your data traffic via the virtual server. This will hide/cloak your data from potential hackers	
Mental well-being	Mental well-being describes your mental health, how well you cope with day-to-day life, how you feel, and how confident you are (good self-esteem).	

Accessibility tools

Technology is transforming the way individuals with a disability access the world around them. This increases the opportunity for these individuals to successfully develop a career of their choice.

- Voice recognition that converts spoken word to digital text
- Screen readers that read screen text out loud
- Closed captioning or subtitles
- Motion or eye tracking
- Switch devices, which take the place of mice or keyboards

The impact of Technology

Positive

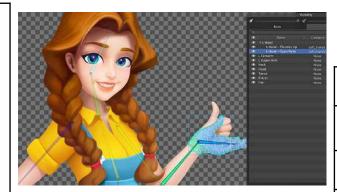
- Apps can encourage physical activity
- Enhances access to learning
- Wearable technology can track heart rate
- Diabetics can track blood sugar levels and receive warnings if it is high or low, helping them to manage their well-being
- Allows flexibility in choosing a working style

Negative

- Can reduce sleep quality
- Eye strain/poor vision
- Repetitive strain injuries
- Physical inactivity can lead to weaker muscles
- Overuse can lead to: Loneliness, Depression, Anxiety

Function and features of cloud computing

Function	Feature
Software as a service (SaaS)	Easy access
Infrastructure as a service (laaS)	Cost-effectiveness
Platform as a service (PaaS)	Security
	Scalability
	On-demand self-service


BLENDER - MEDIA ANIMATIONS

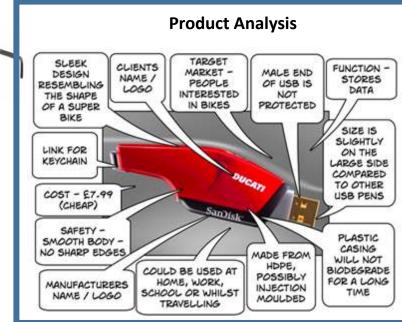
Stop motion - manually animate every frame of the animation e.g. Shaun the Sheep

- slower to make animations
- More difficult to edit

Keyframe animation - pick the important locations, the keyframes and the computer works out the rest (called tweening) e.g. Pixar films

- Faster to make animations
- Easier to edit
- Smoother animations
- Repeatable

Key words		
add	colour	cut
edge	knife tool	extrude
face	keyframe	focus
edit	vertex	location
loop	tweening	object
organic	proportional	rotate
render	ray tracing	scale
timeline	subdivision	mode


Definitions	
Face:	A surface made up of three or more sides. Faces are often referred to as polygons .
Vertex:	A point where one or more edges meet
Edge:	A line connecting two vertices
Objects:	Scenes are made up of geometric, control, lamp and camera objects
Keyframes:	Used for tracking change, a key is a marker in time
Ray tracing:	Rendering that involves tracing the path of a ray of light through the scene
Rendering:	The process of computationally generating a 2D image from 3D geometry
Subdivision:	Creating smooth higher poly surfaces which can take a low polygon mesh as input.
Proportional editing:	Transforming selected elements
Extrude:	Extend an object

Smart Materials

Type Smart Property Uses
Thermochromic Change colour Plastic strip thermometers
pigments with temperature Mugs or spoons that
change colour when hot
Test strips on batteries
Photochromic Change colour Lenses in sunglasses that
pigments with light get darker as the light gets
brighter
Security markers that can
only be seen in UV light
Shape Memory
Alloy (SMA) to their original Sensors in fire sprinkler
size when heated. systems
Electric door locks

Modern Materials

Type	Properties	Uses
Graphene	Hard and extremely strong	Solar cells
	Good conductor	Ink that conducts electricity
	Flexible	In the future it could be used to
		develop flexible technology
Composite	The polymer is flexible and the glass fibres	Hulls of boats
Glass Reinforce Polymer	are strong but brittle. Together they make a	
Fibreglass	composite that is tough and strong.	
Composite	Polymers are reinforced with carbon fibres	Crash helmets
Carbon Reinforced	making it extremely strong.	Frames for high performance
Polymer		racing bikes
		Racing cars
Composite	Cement has good compressive strength but	Construction of buildings and
Reinforced Concrete	poor tensile strength. This is reinforced with	bridges
	steel bars which have good tensile strength.	

Nanomaterials are tiny particles of 1 to 100 nanometres (nm) that can be used in thin films or coatings such as the oleophobic coatings on smartphone screens that repel greasy fingerprints, or hydrophobic materials that repel water.

High-carbon steel

(tool steel)

Low-carbon steel

(mild steel)

NON FERROUS

Aluminium

Copper

Silver

ALLOYS

Brass

(alloy of copper and zinc)

Bronze

(alloy of copper, aluminium and/or nickel)

Stainless steel

(alloy of steel also with chromium,

nickel and magnesium)

	Design & Technology Knowledge Organiser		
FERROUS	Properties	Uses	

Hard but brittle, less malleable than mild steel,

Ductile and tough, easy to form, braze and weld,

good electrical and thermal conductivity but poor

Properties

electricity, extremely malleable and can be polished,

heated, highly resistant to corrosion and an excellent

Properties

Non-ferrous metal that is strong and ductile, casts

Non-ferrous alloy, harder than brass and corrosion

Ferrous metal that is silver when polished, hard and

well and is gold coloured but darkens when

oxidised with age, a good conductor of heat

tough with excellent resistance to corrosion

resistant, reddish/yellow in colour

A precious metal that is soft and malleable when

Light in weight and malleable but strong, a good

conductor of heat and corrosion resistant

An excellent electrical conductor of heat and

good electrical and thermal conductivity

and cannot be forged

resistance to corrosion

oxidises to a green colour

electrical conductor of heat

	Design & Technology Knowl		
FERROUS	Properties	Uses	Products
Cast iron	Cheap to produce, easy to cast, is rigid, has high compressive strength, machines and absorbs vibrations well, has low tensile strength, it is brittle	Pans, brake discs, large castings	6

Design & Technology Knowle	(3	
Properties	Uses	Products

Taps and tools, eg

screwdrivers and chisels

Nuts, bolts, screws, bike

Uses

Plumbing fittings and electrical

Uses

Taps, screws, castings, locks

Cutlery, sinks, saucepans,

and doorknobs

Castings, bearings

surgical equipment

Drink cans, saucepans, bike

wires, professional chef's

frames

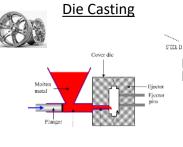
saucepans

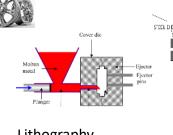
Jewellery

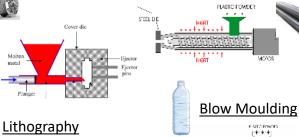
Products

Products

frames and car bodies

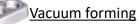

Manufacturing Methods

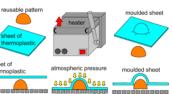

Natural and	Metal	Polymer	Paper and Boards	
Manufactured				
Timbers				
Steam Bending	Injection Moulding	Injection Moulding	Die Cutter	
Vacuum Press	Extrusion	Extrusion	Lithography Printing	
		Blow Moulding	Screen Printing	
		Vacuum forming		
Scales of Production				

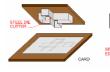

Scales of Production

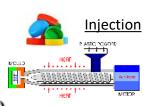
Repair

	Advantages	Disadvantages		
One off	High-quality craftsmanship,	Expensive, requires specialist		
	prototypes can be tested labour, time consuming			
Batch	Volumes are made for demand	Downtime between batches		
	which reduces waste, templates and			
	jigs can reused to produce identical			
	products			
Mass	High volumes can be produced,	Expensive to set up because of		
	materials can be bulk purchased at	specialised equipment,		
	cheaper rates, low-skilled workforce	expensive machinery repairs		
	required			
Continuous 24/7 production using an automated		Expensive to set up because of		
	system, high volumes can be	specialised equipment,		
	produced, materials can be bulk	expensive machinery repairs		
	purchased at cheaper rates, low-			
	skilled workforce required			






Extrusion


Die Cutter

Screen Printing

6Rs	6Rs Refuse Is the product necessary?		- 2 20
	Rethink	Are there alternative materials or design options that are more sustainable?	
	Reduce	Can the product be made from fewer materials? Can the amount of unsustainable materials be reduced?	
	Reuse Can parts of the product be reused in a different product?		
	Recycle	Can the materials used be recycled? If the product made from recycled materials?	

Can the product be repaired rather than being thrown away if it breaks?

This is using computer software to draw and model a product.

Examples: 2D Design, Photoshop, Macromedia Fireworks and Sketch Up

Advantages: Designs can be shared

electronically Accurate

Designs can be easily edited

Disadvantages: Software and training can be

expensive Security issues

This is using computer software to

control machine tools to make products.

Examples: Laser Cutter, 3D printer Advantages:

CAM

Faster

Complicated shapes are easily produced

Exact copied are easily made

Machines can run 24/7

Disadvantages:

High initial set up costs as CAM machines are expensive

Anthropometrics is the practice of taking measurements of the human body and provides categorised data that can be used by designers. Anthropometrics help designers collect useful data, eg head circumferences when designing a safety helmet. In this example, as there is a large variation in size, the designer would need to build some adjustment into the safety helmet design.

Ergonomics can incorporate the use of **anthropometric data** when designing products to improve the user experience. If a designer doesn't use anthropometric data during the design process, it can lead to a poor user experience that causes discomfort, pain and potential injury. Ergonomics is a consideration that leads to a product being designed in a way to make it easy to use. Size, weight, shape, position of buttons and controls are all aspects that contribute to it being ergonomically designed.

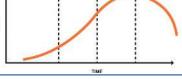
Market Pull and Technology Push

Market Pull is when a new product is produced in response to demand from the market.

Technology Push is when a development in materials, components or manufacturing methods leads to the development of a new product.

Life Cycle Analysis

A Life Cycle Analysis is carried out to assess the environmental impact of a product during its entire life, from cradle-to-grave. It looks at use of materials, use of energy, impact of transporting the materials and the parts


of the product at various points in its life.

- **Supply Raw Material**
- **Transport** Manufacture
- **Package** Use
- **Disposal**

Product Life Cycle

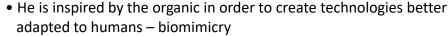
The Product Life Cycle describes the four stages a product goes through from its initial introduction to the market until it is replaced or withdrawn because it is not selling well enough. 1. Introduction

- Growth
- Maturity
- 4. Decline

James Dyson

Key Facts

- Dyson is best known for is dual cyclone technology
- He invented the bagless vacuum prevents poor suction
- The Dyson Air blade dries hands in just 10 seconds and uses
- around 80% less electricity than conventional hand
- dryers. It has a sheet of unheated air traveling at 400 mph
- He developed the bladeless fan that creates smooth air flow
- He has developed several products using the latest technology
- and at the same time reducing impact on the environment by designing them so they use less energy.
- Parts to each of his products are easily replaced and fixed so they do not have to be thrown away.



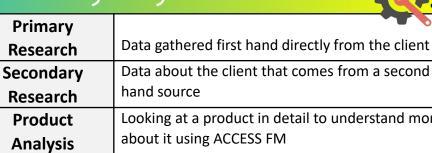
STARCK[®]

dyson

Philippe Starck

Key Facts

- He uses sustainable materials in his design
- His designs are made from recycled and re-used plastic
- He uses new technologies in his design
- He sees products as extension of the human body
- He creates products with the perfect balance between design and
- functionality • He combines technology and an environmental approach.
- His use of industrial practices to manufacture his products



Looking at a product in detail to understand more about it using ACCESS FM

the client.

A summary of the design opportunity **Design Brief** Design **Specification**

Design **Development**

A document that lists all the design criteria that the finished product must meet. Involves making a model of a design, which is then tested and evaluated. A new, improved prototype is made and the process is repeated until the finished design meets all the needs and wants of

To check that the product meets the design

A source that cannot quickly be replaced and

Evaluation

Testing

specification and the needs of the user. Where a designer reflects on the design of a product, looks at what went well during testing and identifies ways that a product could be improved.

Key Words and Definitions

Non Renewable

Energy Source

key words and Dennidons		
Sustainability	The level to which resources can be used	
	without them becoming unavailable in the	
	future.	
Carbon Footprint	t Carbon foot print is the	
	measurement/amount of greenhouse gases	
	produced in the production of products.	
Renewable Energy	A source that is quickly replaced by natural	
Source	means and will not run out.	

will eventually run out.

FOOD CHOICES What makes us choose?

Special occasions Culture Likes and dislikes Time of day Morals

Health conditions

Age Cost

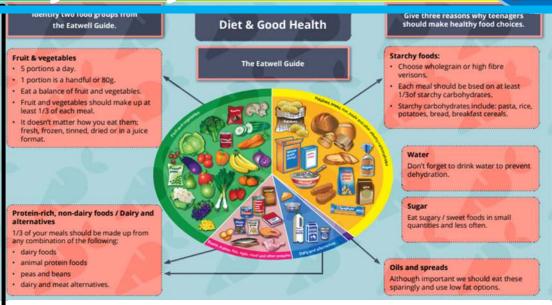
Religion

- Some people will make food choices based on their religious beliefs
- Hinduism most avoid beef & related products; some vegetarians; some avoid
- Judaism kosher; avoid pork & shellfish;
- Islam halal; avoid pork & related products; no alcohol
- Buddhism most are vegetarian or vegan;

Types of vegetarians

Type of vegetarian	Meat	Fish	Dairy	Eggs
Vegan	X	X	X	X
Pescetarian	X	1	1	1
Lacto	×	×	1	×
Lacto-ovo	X	X	1	1

Vegetarian alternatives to meat


Quorn- cultured fungus Soya- soya bean

TVP- Textured vegetable protein

Tofu-soya bean curd

Key words

- 1. Kosher
- 2. Halal
- Vegetarian
- Ovo-lacto vegetarian
- Vegan 5.
- Lacto vegetarian
- 7. Ethical
- Diabetes
- Coeliac
- 10. Gluten
- 11. Protein
- 12. Malnutrition
- 13. Lactose intolerance
- 14. Allergy
- 15. Anaphylaxis
- 16. Epi pen

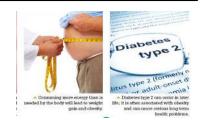
Nutrient Needs of Teens

What is a Vegan diet	eat no animal flesh /meat/fish and poultry and no animal products
What is a lacto vegetarian diet	eat animal produce (Dairy) but not eggs or the flesh of animals/meat/fish/poultry
What is a lacto- ovo vegetarian diet	eat animal produce (Dairy and eggs) but not the flesh of animals/meat/fish/poultry
Why might someone choose to be a vegetarian?	Religious beliefs /Moral beliefs – cruel to kill animals/ Do not like the flavour, texture of meat / Land growing crops can feed many more people than land raising animals / Food scares – BSE, food poisoning, salmonella / Family influence/habits /Peer pressure
What foods can vegetarians get protein from?	Good vegetarian sources are Quorn, Tofu, Soya, Cereals, Pulses, Nuts & Lentils (some may also get this from diary and eggs)
What foods can vegetarians get non- haem Iron from?	Found in pulses, nuts, dried fruit, dark green leafy veg, dark chocolate, cocoa powder, black treacle, curry powder.
What foods can vegetarians get Vitamin B12	Found in yeast extract, marmite and fortified breakfast cereals
Vitamin B12 is needed to:	Needed for energy production, formation of red cells

Nutrient	Reason	Example Foods
Protein	Cope with growth spurts. Boys muscular tissue develops	Omelettes, chicken
Iron	Girls lose iron during menstruation and	Spinach, beef
Vitamin C	could become anaemic if not replaced. Vit C helps absorb iron.	Peppers, strawberries
Calcium	Skeleton grows rapidly. These nutrients	Milk, yogurt, kale, tofu
Vitamin D	helps skeleton reach peak size and bone density.	Tuna, salmon, mackerel

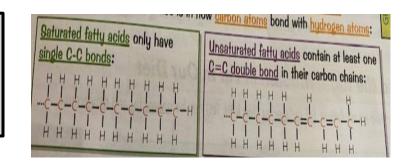
Diet related health conditions

<u>Cardiovascular disease (CVD)</u> - This is the general term that describes disease of the heart or its blood vessels. The term includes coronary heart disease and stroke in which arteries carrying blood around the body become blocked with fatty deposits (cholesterol) and consequently blood flow is reduced. CVD is linked to poor diet and lifestyle traits such as obesity, high blood pressure, a diet high in cholesterol and lack of exercise.


To reduce the outcome of CVD it is important to follow dietary guidelines and eat a diet that is low in saturated fat and instead eat foods higher in unsaturated fat such as oily fish, nuts and seeds, olive oil and the recommended 5-a-day of fruit and vegetables.

<u>Diabetes: type 2</u> - The body may produce too little insulin, or the body has become insulin resistant and cannot utilise the glucose produced by carbohydrates. To help prevent this condition, people should follow the healthy eating guidelines, exercise and maintain a healthy weight. This kind of diabetes usually affects people who are overweight or older. If a person is overweight, they are twice as likely to get type 2 diabetes. Therefore, a high-sugar diet and high-fat diet should be avoided.

<u>Iron deficiency anaemia</u> - Iron is important in making red blood cells, which carry oxygen around the body. Iron deficiency anaemia results in the person affected feeling tired and lethargic because organs and tissues will not get as much oxygen as they need.


Good sources of iron include liver (avoid during pregnancy), eggs, red meat and dried fruit e.g. dried apricots and most dark green leafy vegetables.

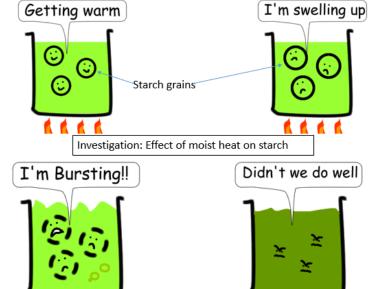
Obesity - This is the term to describe a person who is very overweight, with a lot of body fat. It is a common problem in Western society. The method to determine if a person is overweight is to measure their BMI.

Saturated fat: solid at room temperature, mainly animal foods sources include: fatty cuts of beef, pork, and lamb dark chicken meat and poultry skin high fat dairy foods (whole milk, butter, cheese, sour cream, ice cream), tropical oils (coconut oil, palm oil, cocoa butter)lard Unsaturated fats: Liquid at room temperature, vegetable sources, includes mono and polyunsaturated fats.

Food Science Topics

<u>Keywords</u>

- 1. Gelatinisation
- 2. Viscosity
- 3. Consistency
- 4. Dextrinisation
- 5. Caramelisation

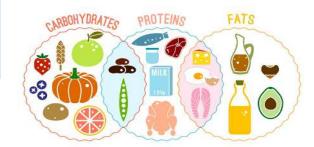

LOVE SCIENCE

Carmelisation: Sugar molecules break down when they reach a high temperature causing the sugar to turn brown and change flavour.

a. The starch grains when heated between 62°C and 80°C with the liquid absorbs the liquid.

b. As it does so it swells/expands.
c. When it is no longer able to hold any more liquid the starch grains burst to release starch causing the

sauce to thicken.


Gelatinisation occurs when the starch grains absorb water and ruptures to thicken a sauce or in the cooking of rice and pasta.

Dextrinisation occurs when starch is exposed to dry heat. Starch in bread, biscuits and cakes with dry heat (toasting/baking) causes the starch molecules to break down to dextrin (brown colour)

Macro-nutrients (are those nutrients we need in large amounts . They all provide us with energy)

Carbohydrates

Starch Sugars Dietary fibre

Chemical formula 10r

glucose: $C_6H_{12}O_6$

Sugars : Monosaccharide Disaccharide Polysaccharide

Key Words

BMR: Basal Metabolic Rate is the amount of energy we need to keep our body alive. Energy balance: the amount of energy we get from food each day is the same as the amount of energy we use each day.

BMI:is a measure that adults and children can use to see if they are a healthy weight for their height.

Energy dense: foods . containing high amounts of fat and carbohydrates (especially sugar) e.g. pizza, pastry, chocolate bars, pastries, cakes, cookies, meat products i.e. sausages, burgers salami).

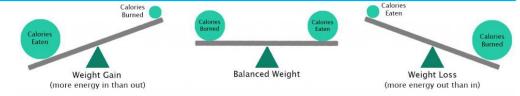
Kilocalorie (kcal)/ kilojoule (Kj): units used to measure energy.

PAL (Physical Activity Level): the amount of energy we use for movement and physical activity every day. **Functions in the body.** Everyone needs energy to survive. It allows the body to:

- Move muscles and be physically active
- Produce heat to keep warm
- Send messages to the brain to make nerves work
- Allow the body to grow and develop

Sources:

Carbohydrate: foods containing sugar and starch (1g of carbohydrates = 3.75 /4 kcals of energy)


Fat: foods containing visible and invisible fats and oils. (1g of fat = 9 kcals of energy)

Protein: (1g of protein = 4 kcals of energy)

Energy Balance The amount of energy we take in from food must be used up by our Basal Metabolic Rate and Physical Activity Level.

If we take in more energy from the food we use every day, the energy we do not use will be stored as fat and the body will gain weight.

If we take in less energy from food than we use every day, the energy stored in body fat will need to be used and the body will gradually lose weight. This is the basis of weight reducing diets.

Physical Activity Level: Regular exercise is an important part of a healthy lifestyle. Physical activity:

- Reduces risk of developing heart disease, obesity and some cancers.
- Improves health of muscles and skeleton
- Keeps the brain alert and working
- Makes people feel good about themselves.
- Health experts are concerned about the sedentary (inactive) lifestyles due to too much sitting for long periods of time e.g. working at a desk, watching television, using the internet or playing computer games.

The recommended physical activity needed daily is suggested to be:

- $\bullet 5-18$ years: aim for an average of at least 60 minutes of moderate intensity physical activity a day across the week
- •19-64 years: aim to do at least 150 minutes of moderate intensity activity a week or 75 minutes of vigorous intensity activity a week.

Amount of energy needed daily by each nutrient: Carbohydrate: 50%. Most of which should come from starch, intrinsic and milk sugars.

No more than 5% of the energy from carbohydrate should come from free sugars, intrinsic sugar found in fruit and vegetables.

Fat: 35% or less eat less saturated fats.

Protein: 15%

Art - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
Art	a)	Prototype	An experimental process where the artist implements ideas into a final format.
	language	Hybrid	a thing made by combining a few different elements.
cept		Adaptation	The dynamic evolutionary process that fits organisms to their environment.
Con	Tier 2	Proportion	How the sizes of different parts of a piece of art or design relate to each other.
ART:	-	Tonal	The range between light and dark or one colour to another.
1: /	Φ.	Mixed Media	A term used to describe artworks composed from a combination of different media or materials.
RING	guage	Scumbling	A shading technique achieved by overlapping lots of little circles.
SPI	lang	Hatching	An artistic technique used to create tonal or shading effects by drawing closely spaced parallel lines.
	ier 3	Cross-hatching	When the hatching lines are placed at an angle to one another, it is called cross-hatching.
	F	Mark Making	The different lines, dots, marks, patterns, and textures we create in an artwork.

Colour code: BLUE= Tier 3 words

ORANGE= Tier 2 words

Look out for colour coding during lessons!

Computer Science – Tier 2 and Tier 3 language

curity	Туре	Keyword	Definition
/bersecui	4)	Virus	Self-replicating software attached to another program/file.
	guage	Encryption	Mathematically converts data into a form that is unreadable without a key.
ы	lang	Biometrics	'Password' created from the user fingerprint, iris, retina, facial or voice.
ENC	ier 2	Authentication	Verifying the identity of a user or process.
ER SC	_	Hacking	Gaining unauthorised access to or control of a computer system.
PUTE	4)	Malware	A variety of forms of hostile or intrusive software.
W _O	uage	Phishing	Messages designed to steal personal details/money/identity.
3 2: 0	langı	Trojans	Masquerades (pretends) as having a legitimate purpose but actually has malicious intent.
RING	Tier 3	Shouldering	Directly observing someone enter personal details e.g. PIN number or password.
SP	L	Blagging	Inventing a scenario to obtaining personal information.

	Туре	Keyword	Definition
SCIENCE: HTML	a)	Multimedia	Content that uses a combination of different types of media – text, audio, images.
	guage	Website	A collection of webpages with information on a particular subject.
	lang	Webpage	A hypertext document connected to the world wide web.
	Tier 2	Navigation	The elements of a website that allows the user to move around the website.
UTEI	L	JPG/PNG	JPG – main file used for images on WWW. PNG – another image file used on WWW.
COMPUTER	a)	Hyper text mark-up language (HTML)	Describes and defines the content of a webpage.
1: C(guage	Uniform resource locator (URL)	An address that identifies a particular file or webpage on the internet.
SPRING	lang	Hyperlink	A link from a hypertext document to another location, activated by clicking on a highlighted word or image.
SPR	Tier 3	Hotspot	An area on a computer screen which can be clicked to activate a function, especially an image or piece of text acting as a hyperlink.
		Web script	A type of computer programming language used to add dynamic features to a webpages.

Computer Science - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
rthon	4)	Program	A detailed plan or procedure for solving a problem with a computer.
€	guage	Coding	How we communicate with computers.
SCIENCE:	lang	Errors	Problems occurring in a piece of code.
SCII	Tier 2	Input	Computer hardware equipment used to provide data and control signals to a computer.
UTER		Data	Facts and figures in their raw form.
COMPUT	ier 3 language	Variable	A memory location within a computer program where values are stored.
2: CC		Syntax	Errors/mistakes made in the piece of code.
SPRING		Iteration	Repeating steps, or instructions , over and over again.
SPR		While loop	When the program needs to repeat actions, while a condition is satisfied.
	L	Condition	Statements that are created by the programmer which evaluates actions in the program.

Туре	Keyword	Definition
uage	Application	A computer software package that performs a specific function directly for an end user.
	Blocks	Scratch bricks that we can use to code algorithms.
lar	Execute	A computer precisely runs through the instruction.
ier 2	Process	The instance of a computer program that is being executed by one or many threads.
	Output	Data that a computer sends to show the results of a users actions.
a)	Abstraction	Identify the important aspects to start with.
ier 3 language	Algorithm	Precise sequence of instructions.
	Selection	Making choices.
	Computational thinking	Taking a complex problem and breaking it down into a series of small, more manageable problems.
	GUI	Graphical User Interface.
	r 3 language Tier 2 language	Application Blocks Execute Process Output Abstraction Algorithm Selection Computational thinking

Design & Technology - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
	96 86	Ecological	Ecological footprint is the impact of human activities measured in terms of the area of biologically productive land and water required to produce the goods consumed and to assimilate the wastes generated.
	language	Lamination	The process through which two or more flexible packaging webs are joined together using a bonding agent.
_ გ	2 laı	Manufactured	A product produced on a large scale using machinery.
1: D	Tier	Composite	A composite material is a combination of two materials with different physical and chemical properties.
SPRING		Accuracy	Correct or precise measurements of a product.
SPR	a)	Photochromic	Photochromic materials changes colour in response to light intensity changes.
	guage	Thermochromic	Thermochromic material changes colour in response to temperature changes.
	langı	Piezoelectric	Piezoelectric materials are materials that produce an electric current when they are placed under mechanical stress.
	Tier 3	Electroluminescent	Electroluminescent materials (ELs) emit light when an electrical current or voltage is applied to it, or when subject to a strong electric field.
	-	Geotextiles	Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain.

	Type	Keyword	Definition Definition
	age.	Collaborative	Collaborative design is a process that brings together different ideas, roles and team members
	ıngu	Contour	Outlining an image on 2D design to create a cut line.
~ ⊤	r 2 la	Visualisations	Visualisation during design refers to the visual mental images used by the designer during the design process.
2: D	Tie	Production	Production methods include one-off, batch and mass. It is the scale at which a product will be manufactured.
SPRING	age	Microencapsulation	Scratch and sniff is created through the process of micro-encapsulation. The desired smell is surrounded by micro-capsules that break easily when gently rubbed.
	Tier 3 langua	Lithography	Lithography is a printing process that uses a flat stone or metal plate on which the image areas are worked using a greasy substance so that the ink will adhere to them by, while the non-image areas are made ink-repellent
		Automation	The use of automatically computer controlled equipment or machinery to manufacture products
		Vector	The process of converting from a bitmap image to a vector

Drama - Tier 2 and Tier 3 language

ale riigh.		» Saice right		
	Туре	Keyword	Definition Definition	
		Devising	Creating a performance using your own ideas	
	age	Stimulus	Something used to provide ideas in drama e.g. an image, a poem, a piece of music	
MA	language	Script	The book that actors read from	
DRAMA	7	Brainstorm	Discuss ideas as a group	
ä	Tier	Dialogue	The words spoken between two or more characters	
SPRING		Atmosphere	The mood created in a scene	
SP	яgе	Improvise	To create a performance with no prior planning	
	language	Playwright	The person who writes a play/script	
	6	Direct Address	When a character talks directly to the audience	
	Tie	Tableau	A still image	

Plot	The story/what happens in a performance
	The story, what happens in a performance
Pace	The speed at which an actor speaks – slow/fast
Pause	A moment of silence, used to build tension
Tone	The way an actor speaks in order to show the emotion of the character e.g. angrily, happily, excitedly
Pitch	How high or low an actors voice is
Explorative Strategies	Techniques that you can use to gain a deeper understanding of characters, to explore scenes and to experiment with characterisation
Narration	A spoken commentary for the audience about the action onstage
Hot-Seating	An actor sits in the hot-seat and is questioned in role , spontaneously answering questions they may not have considered before – this deepens an actors understanding of the character
Marking the Moment	A way of highlighting the most important moment in a scene in order to draw the audience's attention to its significance
Thought Tracking	When a character steps out of a scene to address the audience about how they're feeling
	Pause Tone Pitch Explorative Strategies Narration Hot-Seating Marking the Moment

English - Tier 2 and Tier 3 language

	Туре	Keyword	Definition	
	a)	Identify	Selecting and choosing something, possible a key word from a text.	
	guage	Extract	To take or remove something. Could also be referring to the section of text you are addressing.	
HSI:	lang	Intriguing	Exciting or interesting.	
ENGLISE	Tier 2	Evaluate	To consider the text carefully and provide your opinion, weighing up the limitations but also the positives.	
ä	F	Prioritising	To choose something in order of importance.	
RING	a)	Omniscient Narrator	A narrator who can see everything in the story, and can also describe the thoughts and feelings of all the characters.	
SP	Tier 3 language	Declarative sentence	A sentence that shows a statement.	
		Interrogative sentence	A sentence that asks a question.	
		Exclamatory sentence	A sentence reflecting emotion.	
	F	Imperative sentences	A sentence which shows a command.	

	Type	Keyword	Definition
	a)	Prejudice	A predetermined opinion that is not based on reason or actual experience
	guage	Equality	Being equal, especially in status, rights, or opportunities
SH	lang	Perceptions	The way in which something is regarded, understood, or interpreted
NGLI	ier 2	Extract	A short passage taken from a text, film, or piece of music.
2: E	-	Stereotype	A widely held but fixed and oversimplified image or idea of a particular type of person or thing, eg. Women like to bake.
SING		Accent	A distinctive way of pronouncing a language, especially one associated with a particular country, area, or social class.
SPI	uage	Dialect	A particular form of a language which is peculiar to a specific region or social group.
	er 3 lang	Literature	Books and writings published.
		Colonialism	The policy or practice of acquiring full or partial political control over another country, occupying it with settlers, and exploiting it.
	Τ'	Colloquial	Language used in ordinary or familiar conversation; not formal

Food Technology - Tier 2 and Tier 3 language

Se	Туре	Keyword	Definition Definition
Science	0	Rupture	To break or burst suddenly.
poo	guage	Absorb	To take in or soak up
ш.	lang	Viscosity	The internal friction of a liquid or its ability to resist flow
90T0	Tier 2	Starch	A polysaccharide which forms a key store of energy in plant cells
TECHNOLOGY:	-	Amino acid	A unit from which proteins are constructed.
		Dextrinisation	Breaking up of the starch molecules into smaller groups of glucose molecules when exposed to dry heat, eg toast
000:	language	Gelatinisation	When starch granules swell when cooked with liquid, then burst open and release the starch, causing the liquid to thicken
1: 6		Roux	When a gelatinised liquid is left to cool and it gradually becomes too thick. This is because the starch rearrange itself again to a more crystalline structure
SPRING	Tier 3	Syneresis	A liquid such as water is expelled or extracted from a gel. E.g. when a gelatinised sauce is frozen then defrosted and it splits.
SP	Ë	Retrogradiation	When a gelatinised liquid is left to cool and it gradually becomes too thick. This is because the starch rearrange itself again to a more crystalline structure

Type	Keyword	Definition
ıguage	Intolerant	Unable to be given
	Coeliac	Cannot absorb the protein gluten. Can result in Coeliac disease: a chronic intestinal disorder caused by sensitivity to the protein gliadin contained in the gluten of cereals.
2 laı	Vegetarian	A lacto-vegetarian diet includes dairy products and plants, and a lacto-ovo vegetarian diet includes eggs, dairy products and nuts.
Tier	Protein	A macronutrient that is essential to building muscle mass.
	Calories	A unit of measurement of the energy in the foods that you eat
a)	Lactose	A natural sugar found in milk and dairy products.
Tier 3 language	Gluten	A mixture of two proteins present in cereal grains, especially wheat, which is responsible for the elastic texture of dough.
	Lacto-Ovo	Lacto-ovo-vegetarian diet excludes meat, poultry, and fish but includes eggs and dairy products.
	High Biological Value (HBV)	Protein foods that contain all the essential amino acids
	Kilojoules/Kilocalories	Are units of measurement of energy.
	3 language Tier 2 language	Intolerant Coeliac Vegetarian Protein Calories Lactose Gluten Lacto-Ovo High Biological Value (HBV)

Geography - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
	÷	Population	Is the amount of people that live within an area.
Asia	language	Dense	An area with a high population
		Sparse	An area with a low population
RAP	Tier 2	Biome	Is an area classified according to the species that live in that location.
GEOGRAPHY	_	Carbon Footprint	Is the measurement of the impact humans activity has on the environment (and how much CO2 is emitted)
ij	G)	Urbanisation	Is the increase in the proportion of people living in an urban area compared to a rural area.
SPRING	Tier 3 language	Megacity	A city with more than 10 million.
SPI		Flood Plain	Is an area of land which is covered in water when a river bursts its banks.
		Emigrant	Is the process of leaving a country or area (exiting)
		Immigrant	Is the process of moving to a new country. (moving IN)

	Keyword	Definition
a)	Coast	Where the land meets the sea.
guage	Relief	The height of land above sea level.
_	Erosion	The process of wearing away materials.
_	Deposition	The process of material being dropped.
_	Transportation	The process of material being moved from one location to another.
0	Swash	Is when waves reach the shore and rush up the beach.
langu	Backwash	Is the movement of waves down the beach.
	Fetch	How far a wave has travelled
<u>.</u>	Discordant	A coastline made of horizontal layers of hard and soft rock.
_	Coastal Management	Is a defence against flooding and coastal erosion to protect the coastline.
	Tier 3 language Tier 2 language	Relief Erosion Deposition Transportation Swash Backwash Fetch Discordant

History - Tier 2 and Tier 3 language

HS.		A STORES HOLD		
		Туре	Keyword	Definition
	W2	4)	Invasion	An instance of invading a country or region with an armed force
	3	language	Evacuation	The action of leaving a place
	point		Aviation	The flying or operating of aircraft
	urning	Tier 2	Supremacy	The state or condition of being superior (higher rank) to all others in authority, power, or status
	Tur.		Evaluate	To form a judgement on an issue/factor
	ORY		Appeasement	The policy followed by Britain and France after WW1 in which they allowed Hitler to get away breaking the terms of the Treaty of Versailles to avoid conflict.
	HIST	age	Imperialism	An ideology of extending the rule over peoples and other countries, for extending political and economic access, power and control
	3 1:	langua	Nuclear proliferation	The spread of nuclear weapons, fissionable material, and weapons-applicable nuclear technology
	SPRING	3	Axis powers	An alliance between Germany, Italy and Japan
	S	Tier	Luftwaffe	The aerial warfare branch of the Wehrmacht during World War II
			Wehrmacht	The German armed forces
	a	Туре	Keyword	Definition
	ide	7,60	Reyword	Seminor

g Type	Keyword	Definition
enocide Iype	De humanisation	To deny the humanity of one group, and associate them with animals or diseases in order to turn people against them.
gen nag	Segregation	The action or state of setting someone or something apart from others
st and	Extermination	Committing mass murder
e g	Propaganda	Information, especially of a biased or misleading nature, used to promote a political cause or point of view.
Hol	Persecution	Hostility and ill-treatment, on the basis of ethnicity, religion, sexual orientation or political beliefs.
ORY	Indoctrination	The process of teaching a person or group to accept a set of beliefs (brainwashing)
HIST	Genocide	The deliberate killing of a large number of people from a particular nation or ethnic group with the aim of destroying that nation or group
G 2: lang	Anti Semitism	Hostility to or prejudice against Jewish people
PRING ier 3	Kristallnacht	'Night of broken glass' – an event in which Nazis coordinated an attack on Jewish property and people.
S	Ghetto	An area of a city kept separate from others. Jewish people were separated away from others.
: HISTORY: Holocaus	Persecution Indoctrination Genocide Anti Semitism Kristallnacht	Hostility and ill-treatment, on the basis of ethnicity, religion, sexual orientation or political beliefs. The process of teaching a person or group to accept a set of beliefs (brainwashing) The deliberate killing of a large number of people from a particular nation or ethnic group with the aim of destroying that nation or group Hostility to or prejudice against Jewish people 'Night of broken glass' – an event in which Nazis coordinated an attack on Jewish property and people.

Maths - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
a	a)	Measure	A standard unit used to express the size, amount, or degree of something.
name	language	Dimensions	Measurement -in length, width, and thickness.
Topic		Construct	Geometry: to draw/build a figure/ shape accurately following the given specific conditions.
	Tier 2	Adjacent	Very near, next to, or touching.
MATHS:	_	Inverse	A term is said to be in inverse proportion to another term if it increases (or decreases) as the other decreases (or increases).
1; N	a)	Perpendicular	Meeting a given line or surface at right angles.
SPRING	language	Hypotenuse	The side of a right triangle opposite the right angle.
SPR		Significant figure	All the nonzero digits of a number and the zeros that are included between them or that are final zeros and signify accuracy.
	Tier 3	Compound Interest	Interest paid on both the principal and on accrued interest.
	Τį	Multiplier	A number by which another is multiplied

Maths - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
	4)	Factors	A number that divides another number exactly. E.g. 4 is a factor of 12
	guage	Proportional	When quantities have the same relative size. In other words they have the same ratio
SH.	lang	Scale factor	How many times larger or smaller an enlarged shape will be.
MAT	Tier 2	Simplify	To make the given expression/fraction/ratio simpler by collecting like terms or cancelling down common factors
3 1:	-	Solve	To calculate the value of any unknown/s
SPRING	G)	Direct proportion	As one amount increases, another amount increases at the same rate
	Tier 3 language	Constant of proportionality	The constant value (often written k) relating amounts that rise or fall uniformly together
		Annum	A particular amount per annum means that amount each year
		Percentage	A fraction expressed as the number of parts per hundred and recorded using the notation %
		Decimal multiplier	Calculate percentage increases and percentage decreases very quickly, with one single multiplication.

Type	Keyword	Definition
	Frequency	How many times something happens. Another word for 'total'
a)	Grouped data	Data that has been bundled together in categories
gnage	Mean	A type of average found by adding up a list of numbers and dividing by how many numbers are in the list
	Range	The largest number take away the smallest value in a set of data
	Distribution	How data is shared or spread out
	Average	A value to best represent a set of data. There are three types of average - the mean, the median and the mode
	Outlier	A value that "lies outside" (is much smaller or larger than) most of the other values in a set of data.
ge	Discrete data	Data that can only take certain values
Fier 3	Median	The middle value when a list of numbers is put in order from smallest to largest. A type of average.
lar	Mode	The most common value in a list of numbers. If two values are tied then there is two modes. A type of average
	Tier 3 Tier 2 language language	Frequency Grouped data Mean Range Distribution Average Outlier Discrete data Median

MFL - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
	4	Preterite/Perfect (past) tense	talk about completed actions at specific times in the past
ā	nguage	Subordinate clause	has a subject and a verb, but it cannot stand alone as a complete sentence Since the sun will shine today (the sun=subject; will shine=verb)
nam	<u>a</u>	Adjectival agreement	the adjective 'agrees' with the noun it's describing in gender and number
opic	Tier 2	Intensifier/quantifier	to give force or emphasis, for example really in my feet are really cold.
MFL: T		Sequencers	ords that organize your writing and speaking, words like first, next, then, after that
Ξ		wwwww	Who What Where When Why
SPRING	Tier 3 language	TOPCAT	Tenses Opinions Pronouns Conjuctions Adjectival Agreement Translate
SPR		AVOW	Adjective Verb Order of Words
		PALM	People Action Location Mood
		IESAO (fr) SHET (sp)	Il y a - there is Est -is Sont -(They) are A - (he/she/it) has Ont – (they) have Son – (they) are Hay - (there is/ there are) Es ((it) is Tiene) (it) has)

	Туре	Keyword	Definition
	4)	Past participle (fr) prepositions (sp)	he form of a verb, typically ending in -ed in English
name	nguage	Auxillary verb (fr)	verb used in forming the past tense
oic na	<u> a</u>	Verb ending agreements (être) (fr)	Add an extra —e if feminine, -s if plural and masculine, - es if feminine plural
: Topic	Tier 2	Modal verbs	an auxiliary verb that expresses necessity or possibility
: MFL:	_	Subordinate Clause	has a subject and a verb, but it cannot stand alone as a complete sentence Since the sun will shine today (the sun=subject; will shine=verb)
••		SAP SEP (fr)	Subject (person) Avoir (Auxillary verb) Past participle Subject (person) Être (Auxillary verb) Past participle
SUMMER	Tier 3 language	IESAO (fr) SHET (sp)	Il y a - there is Est -is Sont -(They) are A - (he/she/it) has Ont – (they) have Son – (they) are Hay - (there is/ there are) Es ((it) is Tiene) (it) has)
SU		TOPCAT	Tenses Opinions Pronouns Conjuctions Adjectival Agreement Translate
		AVOW	Adjective Verb Order of Words
		PALM	People Action Location Mood

Music - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
	9,	Looping	When referring to old fashioned tape recorders – you literally loop a piece of tape so it repeats the music over and over
e.	language	Phasing	When two melodies or rhythms go out of synch and back in synch again
ic name	2	Minimalism	A style in music that is repetitive, has gradual changes and is hypnotic
: Topic	Tier	Synchronisation	Bringing sounds together at the correct time
MUSIC:		Ostinati	Musical repetition
ä	9.	Counterpoint	Melodies that are against other melodies (played at the same time)
SPRING	er 3 language	Polyrhyhms	Many rhythms played at the same time
01		Static Harmony	Groups of notes that do not change much
	Tier	Motif/cell	A short melody/musical idea
		Metric Displacement	Moving a melody to another art of the beat

Colour code: BLUE= Tier 3 words

ORANGE= Tier 2 words

Look out for colour coding during lessons!

Religion and Ethics - Tier 2 and Tier 3 language

	Туре	Keyword	Definition
		Roles	Position, status or function of a person in society, as well as the characteristics and social behaviour expected of them
ships	language	Responsibilities	Actions / duties you are expected to carry out
ıtion		Commitment	A sense of dedication and obligation to someone or something
RE: Issues of relationships	Tier 2	Contraception	Methods used to prevent a woman from becoming pregnant during or after sexual intercourse
o sər		Evaluate	To make a judgement on an issue or belief and consider the opposing view
: Issı		Cohabitation	To live together in a sexual relationship without being married or in a civil partnership
1: RE	ıge	Sacrament	An outward sign of an inward blessing by God. A ceremony blessed by God, for example marriage
NG 1	Tier 3 language	Divorce	To legally end a marriage
SPRING		Adultery	Having sexual relations with someone other than your marriage partner
		Ummah	The Muslim community
		Chastity	The state in which a person does not have sexual relationships before marriage.

	Type	Keyword	Definition
Rights	4)	Prejudice	Pre judging – judging people to be inferior or superior without a cause
n Rig	guage	Discrimination	Acts of treating groups of people, or individuals differently, based on prejudice
Huma	2 lang	Social Justice	Promoting a fair society by challenging injustice and valuing diversity. Ensuring that everyone has equal access to provisions, equal opportunities and rights
of	Tier 2	Human Rights	The basic entitlement of all human beings, afforded to them because they are human
Issues	_	Censorship	The practice of suppressing and limiting access to materials considered offensive or a threat to security. People maybe restricted by censorship laws.
2: RE:	4)	Personal Conviction	Something a person strongly feels of believes in
	guage	Zakah	The third Pillar of Islam, a Muslims duty to give 2.5% of their wealth to charity to support those in need.
SPRING	lang	Sadaqah	Islamic term for any good deed done out of compassion or generosity
SF	Tier 3	Pacifism	The belief and practice of none violence to settle disputes
	,-	Relative poverty	A standard of poverty measured in relation to the standards of society in which a person lives.

Science - Tier 2 and Tier 3 language

8	Туре	Keyword	Definition
1 & 2	a)	Instantaneous	Existing or measured at a particular instant
Topic	language	Magnitude	Word for "size"
		Motion	Change with time of the position or orientation of an object
Physics	Tier 2	Rate	the speed at which something happens over a particular period of time
	_	Conservation	Prevention of wasteful use of a resource
SCIENCE:	a)	Centripetal	A force acting towards the centre of a circle that enables objects to move in a circle
1: 5	language	Displacement	The distance and direction travelled in a straight line
SPRING		Velocity	Your speed in a certain direction
SPR	Tier 3	Acceleration	Change of velocity over time
		Momentum	The tendency of an object to keep moving.

<u>;;</u>	Type	Keyword	Definition
Topic 4 & Physic	a)	Competition	The fight to eat, survive and breed.
4 &	guage	Resistance	The natural ability of some members of a species to survive poisons that would kill the other members.
lopic	lan	Inheritance	Gaining your genes from your parents.
ogy 1	ier 2	Dissipation	The way energy spreads out, becoming less useful as it does.
Biol		Insulation	Materials that contain lots of tiny air pockets that prevent heat loss by conduction.
VCE:	a)	Mutations	Changes in DNA that cause variation.
: SCIENCE: Biology 1 Topic 3	<u>la</u> r	Natural selection	Organisms with the best genes and characteristics are more likely to survive, breed and pass on their better genes.
7		Genetic engineering	Changing the characteristics of organisms by giving them genes from another organism.
SPRING	Tier 3	Joules	The units of energy, symbol = J.
S	_	Conduction	Heat transfer through solids caused by vibrating particles bumping into each other.

Super Learning Day Knowledge Organiser

Be Safe

Bullying and Cyberbullying
Bullying is the repetitive,
intentional hurting of one
person or group by another
person or group, where the
relationship involves and
imbalance of power. It can

happen face to face or online.

Circle of support:

- Individual
- Friends
- School
- Family
- Websites
- Police

If you, or anyone you know needs support in this area, speak to a trusted adult, a teacher, form tutor or head of year. You can also get support from Childline at: https://www.childline.org.uk

Be Respected

Changes in the law regarding LGBT relationships

Previous to 2003 it was against the law to "promote" the acceptability of or teach about LGBT people in schools

Equal marriage act- The passing of this bill allowed same-sex couples to marry in the UK. From 2005, same sex couples could enter into a civil partnership, but this did not offer the same legal rights as marriage does. Previous to this, same-sex couples were not able to form legal partnerships.

LGBT...?

Lesbian

A woman attracted to people of the same gender.

Gay

A person attracted to people of the same gender.

Bisexual

A person attracted to two or more genders.

Trans

A person who's gender is different to the one assigned at birth.

Careers

What are gender stereotypes in relation to jobs?

Gender Stereotyping is when there is an assumption that some jobs are more suited to men or women. This can include generalisations about what men and women are good at, what they are capable of doing, and whether a job is 'masculine or feminine'.

Gender stereotyping has lead to a lack of both sexes doing certain jobs, but it has particularly affected women entering careers such as construction, engineering, science and medicines. This is often due to girls being exposed to gender stereotypes from a young age..

How can society address gender stereotypes?

- Invite women from traditionally male careers to talk to students in school.
- Celebrate and recognise women who have succeeded in male dominated industries and jobs.
- Constantly challenge stereotypical views about what men and women are like, and what they are good at.
- Ensure that children are not encouraged towards gender stereotypes from a young age. For example, fancy dress outfits for BOTH genders.
- Celebrate and recognise women who have succeeded in male dominated industries and jobs.

Be Healthy

Drugs and alcohol and their effects

Physical – Prolonged use could lead to sever illness including organ failure, skin conditions, destroy neuro logical pathways. Short term can lead to poor decision making and injury due to loss of balance

Emotional – Change in mood, withdraw from activities and everyday life. Irritable and easily triggered. Extreme highs that can't be matched without the use of drugs and alcohol

Social – Loss of friends

Financial – Debt issues and loan sharking

Legal – Potential arrest for possession Further Support www.talktofrank.com/get-help

Be An Active Citizen

Who are the UK political parties?

There are many political parties in the UK. The 3 biggest are The Labour Party, The Conservative Party and the Liberal Democrats. Usually The Conservative Party or The Labour Party win elections and govern the country.

The Conservative Party - right wing,

believe a smaller state and low taxation will encourage economic growth. The Conservative Party's voting and financial support base has historically consisted mainly of homeowners, business owners, farmers, real estate developers and wealthier voters, especially in rural and suburban areas of England. Took Britain out of the European Union. Receives significant funding from wealthy individuals. Most newspapers and media platforms campaign to get them elected. The Labour Party – left wing. Believe big companies and the better-off could pay higher rates of tax to fund better public services (schools, hospitals, benefits, police, fire service) for the public. Historically The Labour Party's support base has mainly consisted of working people particularly in larger towns and cities. Receives significant funding from trade unions.